| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grplact.1 |
|- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) ) |
| 2 |
|
grplact.2 |
|- X = ( Base ` G ) |
| 3 |
|
grplact.3 |
|- .+ = ( +g ` G ) |
| 4 |
|
grplactcnv.4 |
|- I = ( invg ` G ) |
| 5 |
|
eqid |
|- ( a e. X |-> ( A .+ a ) ) = ( a e. X |-> ( A .+ a ) ) |
| 6 |
2 3
|
grpcl |
|- ( ( G e. Grp /\ A e. X /\ a e. X ) -> ( A .+ a ) e. X ) |
| 7 |
6
|
3expa |
|- ( ( ( G e. Grp /\ A e. X ) /\ a e. X ) -> ( A .+ a ) e. X ) |
| 8 |
2 4
|
grpinvcl |
|- ( ( G e. Grp /\ A e. X ) -> ( I ` A ) e. X ) |
| 9 |
2 3
|
grpcl |
|- ( ( G e. Grp /\ ( I ` A ) e. X /\ b e. X ) -> ( ( I ` A ) .+ b ) e. X ) |
| 10 |
9
|
3expa |
|- ( ( ( G e. Grp /\ ( I ` A ) e. X ) /\ b e. X ) -> ( ( I ` A ) .+ b ) e. X ) |
| 11 |
8 10
|
syldanl |
|- ( ( ( G e. Grp /\ A e. X ) /\ b e. X ) -> ( ( I ` A ) .+ b ) e. X ) |
| 12 |
|
eqcom |
|- ( a = ( ( I ` A ) .+ b ) <-> ( ( I ` A ) .+ b ) = a ) |
| 13 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 14 |
2 3 13 4
|
grplinv |
|- ( ( G e. Grp /\ A e. X ) -> ( ( I ` A ) .+ A ) = ( 0g ` G ) ) |
| 15 |
14
|
adantr |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( I ` A ) .+ A ) = ( 0g ` G ) ) |
| 16 |
15
|
oveq1d |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( I ` A ) .+ A ) .+ a ) = ( ( 0g ` G ) .+ a ) ) |
| 17 |
|
simpll |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> G e. Grp ) |
| 18 |
8
|
adantr |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( I ` A ) e. X ) |
| 19 |
|
simplr |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> A e. X ) |
| 20 |
|
simprl |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> a e. X ) |
| 21 |
2 3
|
grpass |
|- ( ( G e. Grp /\ ( ( I ` A ) e. X /\ A e. X /\ a e. X ) ) -> ( ( ( I ` A ) .+ A ) .+ a ) = ( ( I ` A ) .+ ( A .+ a ) ) ) |
| 22 |
17 18 19 20 21
|
syl13anc |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( I ` A ) .+ A ) .+ a ) = ( ( I ` A ) .+ ( A .+ a ) ) ) |
| 23 |
2 3 13
|
grplid |
|- ( ( G e. Grp /\ a e. X ) -> ( ( 0g ` G ) .+ a ) = a ) |
| 24 |
23
|
ad2ant2r |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( 0g ` G ) .+ a ) = a ) |
| 25 |
16 22 24
|
3eqtr3rd |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> a = ( ( I ` A ) .+ ( A .+ a ) ) ) |
| 26 |
25
|
eqeq2d |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( I ` A ) .+ b ) = a <-> ( ( I ` A ) .+ b ) = ( ( I ` A ) .+ ( A .+ a ) ) ) ) |
| 27 |
12 26
|
bitrid |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( a = ( ( I ` A ) .+ b ) <-> ( ( I ` A ) .+ b ) = ( ( I ` A ) .+ ( A .+ a ) ) ) ) |
| 28 |
|
simprr |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> b e. X ) |
| 29 |
7
|
adantrr |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( A .+ a ) e. X ) |
| 30 |
2 3
|
grplcan |
|- ( ( G e. Grp /\ ( b e. X /\ ( A .+ a ) e. X /\ ( I ` A ) e. X ) ) -> ( ( ( I ` A ) .+ b ) = ( ( I ` A ) .+ ( A .+ a ) ) <-> b = ( A .+ a ) ) ) |
| 31 |
17 28 29 18 30
|
syl13anc |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( I ` A ) .+ b ) = ( ( I ` A ) .+ ( A .+ a ) ) <-> b = ( A .+ a ) ) ) |
| 32 |
27 31
|
bitrd |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( a = ( ( I ` A ) .+ b ) <-> b = ( A .+ a ) ) ) |
| 33 |
5 7 11 32
|
f1ocnv2d |
|- ( ( G e. Grp /\ A e. X ) -> ( ( a e. X |-> ( A .+ a ) ) : X -1-1-onto-> X /\ `' ( a e. X |-> ( A .+ a ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) ) |
| 34 |
1 2
|
grplactfval |
|- ( A e. X -> ( F ` A ) = ( a e. X |-> ( A .+ a ) ) ) |
| 35 |
34
|
adantl |
|- ( ( G e. Grp /\ A e. X ) -> ( F ` A ) = ( a e. X |-> ( A .+ a ) ) ) |
| 36 |
35
|
f1oeq1d |
|- ( ( G e. Grp /\ A e. X ) -> ( ( F ` A ) : X -1-1-onto-> X <-> ( a e. X |-> ( A .+ a ) ) : X -1-1-onto-> X ) ) |
| 37 |
35
|
cnveqd |
|- ( ( G e. Grp /\ A e. X ) -> `' ( F ` A ) = `' ( a e. X |-> ( A .+ a ) ) ) |
| 38 |
1 2
|
grplactfval |
|- ( ( I ` A ) e. X -> ( F ` ( I ` A ) ) = ( a e. X |-> ( ( I ` A ) .+ a ) ) ) |
| 39 |
|
oveq2 |
|- ( a = b -> ( ( I ` A ) .+ a ) = ( ( I ` A ) .+ b ) ) |
| 40 |
39
|
cbvmptv |
|- ( a e. X |-> ( ( I ` A ) .+ a ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) |
| 41 |
38 40
|
eqtrdi |
|- ( ( I ` A ) e. X -> ( F ` ( I ` A ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) |
| 42 |
8 41
|
syl |
|- ( ( G e. Grp /\ A e. X ) -> ( F ` ( I ` A ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) |
| 43 |
37 42
|
eqeq12d |
|- ( ( G e. Grp /\ A e. X ) -> ( `' ( F ` A ) = ( F ` ( I ` A ) ) <-> `' ( a e. X |-> ( A .+ a ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) ) |
| 44 |
36 43
|
anbi12d |
|- ( ( G e. Grp /\ A e. X ) -> ( ( ( F ` A ) : X -1-1-onto-> X /\ `' ( F ` A ) = ( F ` ( I ` A ) ) ) <-> ( ( a e. X |-> ( A .+ a ) ) : X -1-1-onto-> X /\ `' ( a e. X |-> ( A .+ a ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) ) ) |
| 45 |
33 44
|
mpbird |
|- ( ( G e. Grp /\ A e. X ) -> ( ( F ` A ) : X -1-1-onto-> X /\ `' ( F ` A ) = ( F ` ( I ` A ) ) ) ) |