Metamath Proof Explorer


Theorem grplactf1o

Description: The left group action of element A of group G maps the underlying set X of G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008) (Proof shortened by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses grplact.1
|- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) )
grplact.2
|- X = ( Base ` G )
grplact.3
|- .+ = ( +g ` G )
Assertion grplactf1o
|- ( ( G e. Grp /\ A e. X ) -> ( F ` A ) : X -1-1-onto-> X )

Proof

Step Hyp Ref Expression
1 grplact.1
 |-  F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) )
2 grplact.2
 |-  X = ( Base ` G )
3 grplact.3
 |-  .+ = ( +g ` G )
4 eqid
 |-  ( invg ` G ) = ( invg ` G )
5 1 2 3 4 grplactcnv
 |-  ( ( G e. Grp /\ A e. X ) -> ( ( F ` A ) : X -1-1-onto-> X /\ `' ( F ` A ) = ( F ` ( ( invg ` G ) ` A ) ) ) )
6 5 simpld
 |-  ( ( G e. Grp /\ A e. X ) -> ( F ` A ) : X -1-1-onto-> X )