Step |
Hyp |
Ref |
Expression |
1 |
|
grplact.1 |
|- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) ) |
2 |
|
grplact.2 |
|- X = ( Base ` G ) |
3 |
1 2
|
grplactfval |
|- ( A e. X -> ( F ` A ) = ( a e. X |-> ( A .+ a ) ) ) |
4 |
3
|
fveq1d |
|- ( A e. X -> ( ( F ` A ) ` B ) = ( ( a e. X |-> ( A .+ a ) ) ` B ) ) |
5 |
|
oveq2 |
|- ( a = B -> ( A .+ a ) = ( A .+ B ) ) |
6 |
|
eqid |
|- ( a e. X |-> ( A .+ a ) ) = ( a e. X |-> ( A .+ a ) ) |
7 |
|
ovex |
|- ( A .+ B ) e. _V |
8 |
5 6 7
|
fvmpt |
|- ( B e. X -> ( ( a e. X |-> ( A .+ a ) ) ` B ) = ( A .+ B ) ) |
9 |
4 8
|
sylan9eq |
|- ( ( A e. X /\ B e. X ) -> ( ( F ` A ) ` B ) = ( A .+ B ) ) |