Metamath Proof Explorer


Theorem grplidd

Description: The identity element of a group is a left identity. Deduction associated with grplid . (Contributed by SN, 29-Jan-2025)

Ref Expression
Hypotheses grpbn0.b
|- B = ( Base ` G )
grplid.p
|- .+ = ( +g ` G )
grplid.o
|- .0. = ( 0g ` G )
grplidd.g
|- ( ph -> G e. Grp )
grplidd.1
|- ( ph -> X e. B )
Assertion grplidd
|- ( ph -> ( .0. .+ X ) = X )

Proof

Step Hyp Ref Expression
1 grpbn0.b
 |-  B = ( Base ` G )
2 grplid.p
 |-  .+ = ( +g ` G )
3 grplid.o
 |-  .0. = ( 0g ` G )
4 grplidd.g
 |-  ( ph -> G e. Grp )
5 grplidd.1
 |-  ( ph -> X e. B )
6 1 2 3 grplid
 |-  ( ( G e. Grp /\ X e. B ) -> ( .0. .+ X ) = X )
7 4 5 6 syl2anc
 |-  ( ph -> ( .0. .+ X ) = X )