Description: The left inverse of a group element. Deduction associated with grplinv . (Contributed by SN, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplinvd.b | |- B = ( Base ` G ) | |
| grplinvd.p | |- .+ = ( +g ` G ) | ||
| grplinvd.u | |- .0. = ( 0g ` G ) | ||
| grplinvd.n | |- N = ( invg ` G ) | ||
| grplinvd.g | |- ( ph -> G e. Grp ) | ||
| grplinvd.1 | |- ( ph -> X e. B ) | ||
| Assertion | grplinvd | |- ( ph -> ( ( N ` X ) .+ X ) = .0. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grplinvd.b | |- B = ( Base ` G ) | |
| 2 | grplinvd.p | |- .+ = ( +g ` G ) | |
| 3 | grplinvd.u | |- .0. = ( 0g ` G ) | |
| 4 | grplinvd.n | |- N = ( invg ` G ) | |
| 5 | grplinvd.g | |- ( ph -> G e. Grp ) | |
| 6 | grplinvd.1 | |- ( ph -> X e. B ) | |
| 7 | 1 2 3 4 | grplinv | |- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) .+ X ) = .0. ) | 
| 8 | 5 6 7 | syl2anc | |- ( ph -> ( ( N ` X ) .+ X ) = .0. ) |