Description: The left inverse of a group element. Deduction associated with grplinv . (Contributed by SN, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grplinvd.b | |- B = ( Base ` G ) |
|
grplinvd.p | |- .+ = ( +g ` G ) |
||
grplinvd.u | |- .0. = ( 0g ` G ) |
||
grplinvd.n | |- N = ( invg ` G ) |
||
grplinvd.g | |- ( ph -> G e. Grp ) |
||
grplinvd.1 | |- ( ph -> X e. B ) |
||
Assertion | grplinvd | |- ( ph -> ( ( N ` X ) .+ X ) = .0. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplinvd.b | |- B = ( Base ` G ) |
|
2 | grplinvd.p | |- .+ = ( +g ` G ) |
|
3 | grplinvd.u | |- .0. = ( 0g ` G ) |
|
4 | grplinvd.n | |- N = ( invg ` G ) |
|
5 | grplinvd.g | |- ( ph -> G e. Grp ) |
|
6 | grplinvd.1 | |- ( ph -> X e. B ) |
|
7 | 1 2 3 4 | grplinv | |- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) .+ X ) = .0. ) |
8 | 5 6 7 | syl2anc | |- ( ph -> ( ( N ` X ) .+ X ) = .0. ) |