Metamath Proof Explorer


Theorem grplinvd

Description: The left inverse of a group element. Deduction associated with grplinv . (Contributed by SN, 29-Jan-2025)

Ref Expression
Hypotheses grplinvd.b
|- B = ( Base ` G )
grplinvd.p
|- .+ = ( +g ` G )
grplinvd.u
|- .0. = ( 0g ` G )
grplinvd.n
|- N = ( invg ` G )
grplinvd.g
|- ( ph -> G e. Grp )
grplinvd.1
|- ( ph -> X e. B )
Assertion grplinvd
|- ( ph -> ( ( N ` X ) .+ X ) = .0. )

Proof

Step Hyp Ref Expression
1 grplinvd.b
 |-  B = ( Base ` G )
2 grplinvd.p
 |-  .+ = ( +g ` G )
3 grplinvd.u
 |-  .0. = ( 0g ` G )
4 grplinvd.n
 |-  N = ( invg ` G )
5 grplinvd.g
 |-  ( ph -> G e. Grp )
6 grplinvd.1
 |-  ( ph -> X e. B )
7 1 2 3 4 grplinv
 |-  ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) .+ X ) = .0. )
8 5 6 7 syl2anc
 |-  ( ph -> ( ( N ` X ) .+ X ) = .0. )