| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grplrinv.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | grplrinv.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | grplrinv.i |  |-  .0. = ( 0g ` G ) | 
						
							| 4 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 5 | 1 4 | grpinvcl |  |-  ( ( G e. Grp /\ x e. B ) -> ( ( invg ` G ) ` x ) e. B ) | 
						
							| 6 |  | oveq1 |  |-  ( y = ( ( invg ` G ) ` x ) -> ( y .+ x ) = ( ( ( invg ` G ) ` x ) .+ x ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( y = ( ( invg ` G ) ` x ) -> ( ( y .+ x ) = .0. <-> ( ( ( invg ` G ) ` x ) .+ x ) = .0. ) ) | 
						
							| 8 |  | oveq2 |  |-  ( y = ( ( invg ` G ) ` x ) -> ( x .+ y ) = ( x .+ ( ( invg ` G ) ` x ) ) ) | 
						
							| 9 | 8 | eqeq1d |  |-  ( y = ( ( invg ` G ) ` x ) -> ( ( x .+ y ) = .0. <-> ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) ) | 
						
							| 10 | 7 9 | anbi12d |  |-  ( y = ( ( invg ` G ) ` x ) -> ( ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) <-> ( ( ( ( invg ` G ) ` x ) .+ x ) = .0. /\ ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( G e. Grp /\ x e. B ) /\ y = ( ( invg ` G ) ` x ) ) -> ( ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) <-> ( ( ( ( invg ` G ) ` x ) .+ x ) = .0. /\ ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) ) ) | 
						
							| 12 | 1 2 3 4 | grplinv |  |-  ( ( G e. Grp /\ x e. B ) -> ( ( ( invg ` G ) ` x ) .+ x ) = .0. ) | 
						
							| 13 | 1 2 3 4 | grprinv |  |-  ( ( G e. Grp /\ x e. B ) -> ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) | 
						
							| 14 | 12 13 | jca |  |-  ( ( G e. Grp /\ x e. B ) -> ( ( ( ( invg ` G ) ` x ) .+ x ) = .0. /\ ( x .+ ( ( invg ` G ) ` x ) ) = .0. ) ) | 
						
							| 15 | 5 11 14 | rspcedvd |  |-  ( ( G e. Grp /\ x e. B ) -> E. y e. B ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) ) | 
						
							| 16 | 15 | ralrimiva |  |-  ( G e. Grp -> A. x e. B E. y e. B ( ( y .+ x ) = .0. /\ ( x .+ y ) = .0. ) ) |