Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | grpmgmd.g | |- ( ph -> G e. Grp ) |
|
Assertion | grpmgmd | |- ( ph -> G e. Mgm ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmgmd.g | |- ( ph -> G e. Grp ) |
|
2 | 1 | grpmndd | |- ( ph -> G e. Mnd ) |
3 | mndmgm | |- ( G e. Mnd -> G e. Mgm ) |
|
4 | 2 3 | syl | |- ( ph -> G e. Mgm ) |