Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
2 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
3 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
4 | 1 2 3 | isgrp | |- ( G e. Grp <-> ( G e. Mnd /\ A. a e. ( Base ` G ) E. m e. ( Base ` G ) ( m ( +g ` G ) a ) = ( 0g ` G ) ) ) |
5 | 4 | simplbi | |- ( G e. Grp -> G e. Mnd ) |