Description: A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007) (Revised by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grpn0 | |- ( G e. Grp -> G =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 2 | 1 | grpbn0 | |- ( G e. Grp -> ( Base ` G ) =/= (/) ) |
| 3 | fveq2 | |- ( G = (/) -> ( Base ` G ) = ( Base ` (/) ) ) |
|
| 4 | base0 | |- (/) = ( Base ` (/) ) |
|
| 5 | 3 4 | eqtr4di | |- ( G = (/) -> ( Base ` G ) = (/) ) |
| 6 | 5 | necon3i | |- ( ( Base ` G ) =/= (/) -> G =/= (/) ) |
| 7 | 2 6 | syl | |- ( G e. Grp -> G =/= (/) ) |