Metamath Proof Explorer


Theorem grpnpncan0

Description: Cancellation law for group subtraction ( npncan2 analog). (Contributed by AV, 24-Nov-2019)

Ref Expression
Hypotheses grpsubadd.b
|- B = ( Base ` G )
grpsubadd.p
|- .+ = ( +g ` G )
grpsubadd.m
|- .- = ( -g ` G )
grpnpncan0.0
|- .0. = ( 0g ` G )
Assertion grpnpncan0
|- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( ( X .- Y ) .+ ( Y .- X ) ) = .0. )

Proof

Step Hyp Ref Expression
1 grpsubadd.b
 |-  B = ( Base ` G )
2 grpsubadd.p
 |-  .+ = ( +g ` G )
3 grpsubadd.m
 |-  .- = ( -g ` G )
4 grpnpncan0.0
 |-  .0. = ( 0g ` G )
5 simpl
 |-  ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> G e. Grp )
6 simprl
 |-  ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> X e. B )
7 simprr
 |-  ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> Y e. B )
8 1 2 3 grpnpncan
 |-  ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ X e. B ) ) -> ( ( X .- Y ) .+ ( Y .- X ) ) = ( X .- X ) )
9 5 6 7 6 8 syl13anc
 |-  ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( ( X .- Y ) .+ ( Y .- X ) ) = ( X .- X ) )
10 1 4 3 grpsubid
 |-  ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = .0. )
11 10 adantrr
 |-  ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( X .- X ) = .0. )
12 9 11 eqtrd
 |-  ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( ( X .- Y ) .+ ( Y .- X ) ) = .0. )