| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpasscan1.1 |
|- X = ran G |
| 2 |
|
grpasscan1.2 |
|- N = ( inv ` G ) |
| 3 |
1 2
|
grpoinvcl |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) |
| 4 |
|
eqid |
|- ( GId ` G ) = ( GId ` G ) |
| 5 |
1 4 2
|
grporinv |
|- ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( GId ` G ) ) |
| 6 |
3 5
|
syldan |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( GId ` G ) ) |
| 7 |
1 4 2
|
grpolinv |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G A ) = ( GId ` G ) ) |
| 8 |
6 7
|
eqtr4d |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( ( N ` A ) G A ) ) |
| 9 |
1 2
|
grpoinvcl |
|- ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( N ` ( N ` A ) ) e. X ) |
| 10 |
3 9
|
syldan |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` ( N ` A ) ) e. X ) |
| 11 |
|
simpr |
|- ( ( G e. GrpOp /\ A e. X ) -> A e. X ) |
| 12 |
10 11 3
|
3jca |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` ( N ` A ) ) e. X /\ A e. X /\ ( N ` A ) e. X ) ) |
| 13 |
1
|
grpolcan |
|- ( ( G e. GrpOp /\ ( ( N ` ( N ` A ) ) e. X /\ A e. X /\ ( N ` A ) e. X ) ) -> ( ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( ( N ` A ) G A ) <-> ( N ` ( N ` A ) ) = A ) ) |
| 14 |
12 13
|
syldan |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( ( N ` A ) G A ) <-> ( N ` ( N ` A ) ) = A ) ) |
| 15 |
8 14
|
mpbid |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` ( N ` A ) ) = A ) |