| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpasscan1.1 |  |-  X = ran G | 
						
							| 2 |  | grpasscan1.2 |  |-  N = ( inv ` G ) | 
						
							| 3 | 1 2 | grpoinvcl |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) | 
						
							| 4 |  | eqid |  |-  ( GId ` G ) = ( GId ` G ) | 
						
							| 5 | 1 4 2 | grporinv |  |-  ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( GId ` G ) ) | 
						
							| 6 | 3 5 | syldan |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( GId ` G ) ) | 
						
							| 7 | 1 4 2 | grpolinv |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G A ) = ( GId ` G ) ) | 
						
							| 8 | 6 7 | eqtr4d |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( ( N ` A ) G A ) ) | 
						
							| 9 | 1 2 | grpoinvcl |  |-  ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( N ` ( N ` A ) ) e. X ) | 
						
							| 10 | 3 9 | syldan |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( N ` ( N ` A ) ) e. X ) | 
						
							| 11 |  | simpr |  |-  ( ( G e. GrpOp /\ A e. X ) -> A e. X ) | 
						
							| 12 | 10 11 3 | 3jca |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` ( N ` A ) ) e. X /\ A e. X /\ ( N ` A ) e. X ) ) | 
						
							| 13 | 1 | grpolcan |  |-  ( ( G e. GrpOp /\ ( ( N ` ( N ` A ) ) e. X /\ A e. X /\ ( N ` A ) e. X ) ) -> ( ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( ( N ` A ) G A ) <-> ( N ` ( N ` A ) ) = A ) ) | 
						
							| 14 | 12 13 | syldan |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G ( N ` ( N ` A ) ) ) = ( ( N ` A ) G A ) <-> ( N ` ( N ` A ) ) = A ) ) | 
						
							| 15 | 8 14 | mpbid |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( N ` ( N ` A ) ) = A ) |