Metamath Proof Explorer


Theorem grpocl

Description: Closure law for a group operation. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1
|- X = ran G
Assertion grpocl
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X )

Proof

Step Hyp Ref Expression
1 grpfo.1
 |-  X = ran G
2 1 grpofo
 |-  ( G e. GrpOp -> G : ( X X. X ) -onto-> X )
3 fof
 |-  ( G : ( X X. X ) -onto-> X -> G : ( X X. X ) --> X )
4 2 3 syl
 |-  ( G e. GrpOp -> G : ( X X. X ) --> X )
5 fovrn
 |-  ( ( G : ( X X. X ) --> X /\ A e. X /\ B e. X ) -> ( A G B ) e. X )
6 4 5 syl3an1
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X )