Description: Closure law for a group operation. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | grpfo.1 | |- X = ran G |
|
Assertion | grpocl | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpfo.1 | |- X = ran G |
|
2 | 1 | grpofo | |- ( G e. GrpOp -> G : ( X X. X ) -onto-> X ) |
3 | fof | |- ( G : ( X X. X ) -onto-> X -> G : ( X X. X ) --> X ) |
|
4 | 2 3 | syl | |- ( G e. GrpOp -> G : ( X X. X ) --> X ) |
5 | fovrn | |- ( ( G : ( X X. X ) --> X /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
|
6 | 4 5 | syl3an1 | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |