Metamath Proof Explorer


Theorem grpodivcl

Description: Closure of group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1
|- X = ran G
grpdivf.3
|- D = ( /g ` G )
Assertion grpodivcl
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) e. X )

Proof

Step Hyp Ref Expression
1 grpdivf.1
 |-  X = ran G
2 grpdivf.3
 |-  D = ( /g ` G )
3 1 2 grpodivf
 |-  ( G e. GrpOp -> D : ( X X. X ) --> X )
4 fovrn
 |-  ( ( D : ( X X. X ) --> X /\ A e. X /\ B e. X ) -> ( A D B ) e. X )
5 3 4 syl3an1
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) e. X )