Step |
Hyp |
Ref |
Expression |
1 |
|
grpdivf.1 |
|- X = ran G |
2 |
|
grpdivf.3 |
|- D = ( /g ` G ) |
3 |
|
simpl |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. GrpOp ) |
4 |
|
simpr1 |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
5 |
1 2
|
grpodivcl |
|- ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( B D C ) e. X ) |
6 |
5
|
3adant3r1 |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) e. X ) |
7 |
|
eqid |
|- ( inv ` G ) = ( inv ` G ) |
8 |
1 7 2
|
grpodivval |
|- ( ( G e. GrpOp /\ A e. X /\ ( B D C ) e. X ) -> ( A D ( B D C ) ) = ( A G ( ( inv ` G ) ` ( B D C ) ) ) ) |
9 |
3 4 6 8
|
syl3anc |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( ( inv ` G ) ` ( B D C ) ) ) ) |
10 |
1 7 2
|
grpoinvdiv |
|- ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( ( inv ` G ) ` ( B D C ) ) = ( C D B ) ) |
11 |
10
|
3adant3r1 |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` ( B D C ) ) = ( C D B ) ) |
12 |
11
|
oveq2d |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G ( ( inv ` G ) ` ( B D C ) ) ) = ( A G ( C D B ) ) ) |
13 |
9 12
|
eqtrd |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( C D B ) ) ) |