| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdivf.1 |  |-  X = ran G | 
						
							| 2 |  | grpdivf.3 |  |-  D = ( /g ` G ) | 
						
							| 3 |  | simpl |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. GrpOp ) | 
						
							| 4 |  | simpr1 |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) | 
						
							| 5 | 1 2 | grpodivcl |  |-  ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( B D C ) e. X ) | 
						
							| 6 | 5 | 3adant3r1 |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) e. X ) | 
						
							| 7 |  | eqid |  |-  ( inv ` G ) = ( inv ` G ) | 
						
							| 8 | 1 7 2 | grpodivval |  |-  ( ( G e. GrpOp /\ A e. X /\ ( B D C ) e. X ) -> ( A D ( B D C ) ) = ( A G ( ( inv ` G ) ` ( B D C ) ) ) ) | 
						
							| 9 | 3 4 6 8 | syl3anc |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( ( inv ` G ) ` ( B D C ) ) ) ) | 
						
							| 10 | 1 7 2 | grpoinvdiv |  |-  ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( ( inv ` G ) ` ( B D C ) ) = ( C D B ) ) | 
						
							| 11 | 10 | 3adant3r1 |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` ( B D C ) ) = ( C D B ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G ( ( inv ` G ) ` ( B D C ) ) ) = ( A G ( C D B ) ) ) | 
						
							| 13 | 9 12 | eqtrd |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( C D B ) ) ) |