| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdiv.1 |  |-  X = ran G | 
						
							| 2 |  | grpdiv.2 |  |-  N = ( inv ` G ) | 
						
							| 3 |  | grpdiv.3 |  |-  D = ( /g ` G ) | 
						
							| 4 |  | rnexg |  |-  ( G e. GrpOp -> ran G e. _V ) | 
						
							| 5 | 1 4 | eqeltrid |  |-  ( G e. GrpOp -> X e. _V ) | 
						
							| 6 |  | mpoexga |  |-  ( ( X e. _V /\ X e. _V ) -> ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) e. _V ) | 
						
							| 7 | 5 5 6 | syl2anc |  |-  ( G e. GrpOp -> ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) e. _V ) | 
						
							| 8 |  | rneq |  |-  ( g = G -> ran g = ran G ) | 
						
							| 9 | 8 1 | eqtr4di |  |-  ( g = G -> ran g = X ) | 
						
							| 10 |  | id |  |-  ( g = G -> g = G ) | 
						
							| 11 |  | eqidd |  |-  ( g = G -> x = x ) | 
						
							| 12 |  | fveq2 |  |-  ( g = G -> ( inv ` g ) = ( inv ` G ) ) | 
						
							| 13 | 12 2 | eqtr4di |  |-  ( g = G -> ( inv ` g ) = N ) | 
						
							| 14 | 13 | fveq1d |  |-  ( g = G -> ( ( inv ` g ) ` y ) = ( N ` y ) ) | 
						
							| 15 | 10 11 14 | oveq123d |  |-  ( g = G -> ( x g ( ( inv ` g ) ` y ) ) = ( x G ( N ` y ) ) ) | 
						
							| 16 | 9 9 15 | mpoeq123dv |  |-  ( g = G -> ( x e. ran g , y e. ran g |-> ( x g ( ( inv ` g ) ` y ) ) ) = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) | 
						
							| 17 |  | df-gdiv |  |-  /g = ( g e. GrpOp |-> ( x e. ran g , y e. ran g |-> ( x g ( ( inv ` g ) ` y ) ) ) ) | 
						
							| 18 | 16 17 | fvmptg |  |-  ( ( G e. GrpOp /\ ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) e. _V ) -> ( /g ` G ) = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) | 
						
							| 19 | 7 18 | mpdan |  |-  ( G e. GrpOp -> ( /g ` G ) = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) | 
						
							| 20 | 3 19 | eqtrid |  |-  ( G e. GrpOp -> D = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) |