Description: Division of a group member by itself. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpdivf.1 | |- X = ran G |
|
grpdivf.3 | |- D = ( /g ` G ) |
||
grpdivid.3 | |- U = ( GId ` G ) |
||
Assertion | grpodivid | |- ( ( G e. GrpOp /\ A e. X ) -> ( A D A ) = U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdivf.1 | |- X = ran G |
|
2 | grpdivf.3 | |- D = ( /g ` G ) |
|
3 | grpdivid.3 | |- U = ( GId ` G ) |
|
4 | eqid | |- ( inv ` G ) = ( inv ` G ) |
|
5 | 1 4 2 | grpodivval | |- ( ( G e. GrpOp /\ A e. X /\ A e. X ) -> ( A D A ) = ( A G ( ( inv ` G ) ` A ) ) ) |
6 | 5 | 3anidm23 | |- ( ( G e. GrpOp /\ A e. X ) -> ( A D A ) = ( A G ( ( inv ` G ) ` A ) ) ) |
7 | 1 3 4 | grporinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( ( inv ` G ) ` A ) ) = U ) |
8 | 6 7 | eqtrd | |- ( ( G e. GrpOp /\ A e. X ) -> ( A D A ) = U ) |