Metamath Proof Explorer


Theorem grpodivid

Description: Division of a group member by itself. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1
|- X = ran G
grpdivf.3
|- D = ( /g ` G )
grpdivid.3
|- U = ( GId ` G )
Assertion grpodivid
|- ( ( G e. GrpOp /\ A e. X ) -> ( A D A ) = U )

Proof

Step Hyp Ref Expression
1 grpdivf.1
 |-  X = ran G
2 grpdivf.3
 |-  D = ( /g ` G )
3 grpdivid.3
 |-  U = ( GId ` G )
4 eqid
 |-  ( inv ` G ) = ( inv ` G )
5 1 4 2 grpodivval
 |-  ( ( G e. GrpOp /\ A e. X /\ A e. X ) -> ( A D A ) = ( A G ( ( inv ` G ) ` A ) ) )
6 5 3anidm23
 |-  ( ( G e. GrpOp /\ A e. X ) -> ( A D A ) = ( A G ( ( inv ` G ) ` A ) ) )
7 1 3 4 grporinv
 |-  ( ( G e. GrpOp /\ A e. X ) -> ( A G ( ( inv ` G ) ` A ) ) = U )
8 6 7 eqtrd
 |-  ( ( G e. GrpOp /\ A e. X ) -> ( A D A ) = U )