Description: Division of a group member by itself. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdivf.1 | |- X = ran G | |
| grpdivf.3 | |- D = ( /g ` G ) | ||
| grpdivid.3 | |- U = ( GId ` G ) | ||
| Assertion | grpodivid | |- ( ( G e. GrpOp /\ A e. X ) -> ( A D A ) = U ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpdivf.1 | |- X = ran G | |
| 2 | grpdivf.3 | |- D = ( /g ` G ) | |
| 3 | grpdivid.3 | |- U = ( GId ` G ) | |
| 4 | eqid | |- ( inv ` G ) = ( inv ` G ) | |
| 5 | 1 4 2 | grpodivval | |- ( ( G e. GrpOp /\ A e. X /\ A e. X ) -> ( A D A ) = ( A G ( ( inv ` G ) ` A ) ) ) | 
| 6 | 5 | 3anidm23 | |- ( ( G e. GrpOp /\ A e. X ) -> ( A D A ) = ( A G ( ( inv ` G ) ` A ) ) ) | 
| 7 | 1 3 4 | grporinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( ( inv ` G ) ` A ) ) = U ) | 
| 8 | 6 7 | eqtrd | |- ( ( G e. GrpOp /\ A e. X ) -> ( A D A ) = U ) |