| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpdiv.1 |
|- X = ran G |
| 2 |
|
grpdiv.2 |
|- N = ( inv ` G ) |
| 3 |
|
grpdiv.3 |
|- D = ( /g ` G ) |
| 4 |
1 2
|
grpoinvcl |
|- ( ( G e. GrpOp /\ B e. X ) -> ( N ` B ) e. X ) |
| 5 |
4
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` B ) e. X ) |
| 6 |
1 2 3
|
grpodivval |
|- ( ( G e. GrpOp /\ A e. X /\ ( N ` B ) e. X ) -> ( A D ( N ` B ) ) = ( A G ( N ` ( N ` B ) ) ) ) |
| 7 |
5 6
|
syld3an3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D ( N ` B ) ) = ( A G ( N ` ( N ` B ) ) ) ) |
| 8 |
1 2
|
grpo2inv |
|- ( ( G e. GrpOp /\ B e. X ) -> ( N ` ( N ` B ) ) = B ) |
| 9 |
8
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( N ` B ) ) = B ) |
| 10 |
9
|
oveq2d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( N ` ( N ` B ) ) ) = ( A G B ) ) |
| 11 |
7 10
|
eqtrd |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D ( N ` B ) ) = ( A G B ) ) |