Metamath Proof Explorer


Theorem grpodivval

Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1
|- X = ran G
grpdiv.2
|- N = ( inv ` G )
grpdiv.3
|- D = ( /g ` G )
Assertion grpodivval
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) )

Proof

Step Hyp Ref Expression
1 grpdiv.1
 |-  X = ran G
2 grpdiv.2
 |-  N = ( inv ` G )
3 grpdiv.3
 |-  D = ( /g ` G )
4 1 2 3 grpodivfval
 |-  ( G e. GrpOp -> D = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) )
5 4 oveqd
 |-  ( G e. GrpOp -> ( A D B ) = ( A ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) B ) )
6 oveq1
 |-  ( x = A -> ( x G ( N ` y ) ) = ( A G ( N ` y ) ) )
7 fveq2
 |-  ( y = B -> ( N ` y ) = ( N ` B ) )
8 7 oveq2d
 |-  ( y = B -> ( A G ( N ` y ) ) = ( A G ( N ` B ) ) )
9 eqid
 |-  ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) = ( x e. X , y e. X |-> ( x G ( N ` y ) ) )
10 ovex
 |-  ( A G ( N ` B ) ) e. _V
11 6 8 9 10 ovmpo
 |-  ( ( A e. X /\ B e. X ) -> ( A ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) B ) = ( A G ( N ` B ) ) )
12 5 11 sylan9eq
 |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( A D B ) = ( A G ( N ` B ) ) )
13 12 3impb
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) )