Step |
Hyp |
Ref |
Expression |
1 |
|
grpdiv.1 |
|- X = ran G |
2 |
|
grpdiv.2 |
|- N = ( inv ` G ) |
3 |
|
grpdiv.3 |
|- D = ( /g ` G ) |
4 |
1 2 3
|
grpodivfval |
|- ( G e. GrpOp -> D = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) |
5 |
4
|
oveqd |
|- ( G e. GrpOp -> ( A D B ) = ( A ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) B ) ) |
6 |
|
oveq1 |
|- ( x = A -> ( x G ( N ` y ) ) = ( A G ( N ` y ) ) ) |
7 |
|
fveq2 |
|- ( y = B -> ( N ` y ) = ( N ` B ) ) |
8 |
7
|
oveq2d |
|- ( y = B -> ( A G ( N ` y ) ) = ( A G ( N ` B ) ) ) |
9 |
|
eqid |
|- ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) |
10 |
|
ovex |
|- ( A G ( N ` B ) ) e. _V |
11 |
6 8 9 10
|
ovmpo |
|- ( ( A e. X /\ B e. X ) -> ( A ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) B ) = ( A G ( N ` B ) ) ) |
12 |
5 11
|
sylan9eq |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( A D B ) = ( A G ( N ` B ) ) ) |
13 |
12
|
3impb |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) ) |