| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpeqdivid.1 |
|- X = ran G |
| 2 |
|
grpeqdivid.2 |
|- U = ( GId ` G ) |
| 3 |
|
grpeqdivid.3 |
|- D = ( /g ` G ) |
| 4 |
1 3 2
|
grpodivid |
|- ( ( G e. GrpOp /\ B e. X ) -> ( B D B ) = U ) |
| 5 |
4
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B D B ) = U ) |
| 6 |
|
oveq1 |
|- ( A = B -> ( A D B ) = ( B D B ) ) |
| 7 |
6
|
eqeq1d |
|- ( A = B -> ( ( A D B ) = U <-> ( B D B ) = U ) ) |
| 8 |
5 7
|
syl5ibrcom |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A = B -> ( A D B ) = U ) ) |
| 9 |
|
oveq1 |
|- ( ( A D B ) = U -> ( ( A D B ) G B ) = ( U G B ) ) |
| 10 |
1 3
|
grponpcan |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) G B ) = A ) |
| 11 |
1 2
|
grpolid |
|- ( ( G e. GrpOp /\ B e. X ) -> ( U G B ) = B ) |
| 12 |
11
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( U G B ) = B ) |
| 13 |
10 12
|
eqeq12d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( ( A D B ) G B ) = ( U G B ) <-> A = B ) ) |
| 14 |
9 13
|
imbitrid |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) = U -> A = B ) ) |
| 15 |
8 14
|
impbid |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A = B <-> ( A D B ) = U ) ) |