| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpoinveu.1 |
|- X = ran G |
| 2 |
|
grpoinveu.2 |
|- U = ( GId ` G ) |
| 3 |
1 2
|
grpoidcl |
|- ( G e. GrpOp -> U e. X ) |
| 4 |
1
|
grporcan |
|- ( ( G e. GrpOp /\ ( A e. X /\ U e. X /\ A e. X ) ) -> ( ( A G A ) = ( U G A ) <-> A = U ) ) |
| 5 |
4
|
3exp2 |
|- ( G e. GrpOp -> ( A e. X -> ( U e. X -> ( A e. X -> ( ( A G A ) = ( U G A ) <-> A = U ) ) ) ) ) |
| 6 |
3 5
|
mpid |
|- ( G e. GrpOp -> ( A e. X -> ( A e. X -> ( ( A G A ) = ( U G A ) <-> A = U ) ) ) ) |
| 7 |
6
|
pm2.43d |
|- ( G e. GrpOp -> ( A e. X -> ( ( A G A ) = ( U G A ) <-> A = U ) ) ) |
| 8 |
7
|
imp |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( A G A ) = ( U G A ) <-> A = U ) ) |
| 9 |
1 2
|
grpolid |
|- ( ( G e. GrpOp /\ A e. X ) -> ( U G A ) = A ) |
| 10 |
9
|
eqeq2d |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( A G A ) = ( U G A ) <-> ( A G A ) = A ) ) |
| 11 |
8 10
|
bitr3d |
|- ( ( G e. GrpOp /\ A e. X ) -> ( A = U <-> ( A G A ) = A ) ) |