| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpoinveu.1 |  |-  X = ran G | 
						
							| 2 |  | grpoinveu.2 |  |-  U = ( GId ` G ) | 
						
							| 3 | 1 2 | grpoidcl |  |-  ( G e. GrpOp -> U e. X ) | 
						
							| 4 | 1 | grporcan |  |-  ( ( G e. GrpOp /\ ( A e. X /\ U e. X /\ A e. X ) ) -> ( ( A G A ) = ( U G A ) <-> A = U ) ) | 
						
							| 5 | 4 | 3exp2 |  |-  ( G e. GrpOp -> ( A e. X -> ( U e. X -> ( A e. X -> ( ( A G A ) = ( U G A ) <-> A = U ) ) ) ) ) | 
						
							| 6 | 3 5 | mpid |  |-  ( G e. GrpOp -> ( A e. X -> ( A e. X -> ( ( A G A ) = ( U G A ) <-> A = U ) ) ) ) | 
						
							| 7 | 6 | pm2.43d |  |-  ( G e. GrpOp -> ( A e. X -> ( ( A G A ) = ( U G A ) <-> A = U ) ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( A G A ) = ( U G A ) <-> A = U ) ) | 
						
							| 9 | 1 2 | grpolid |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( U G A ) = A ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( A G A ) = ( U G A ) <-> ( A G A ) = A ) ) | 
						
							| 11 | 8 10 | bitr3d |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( A = U <-> ( A G A ) = A ) ) |