Metamath Proof Explorer


Theorem grpoidcl

Description: The identity element of a group belongs to the group. (Contributed by NM, 24-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpoidval.1
|- X = ran G
grpoidval.2
|- U = ( GId ` G )
Assertion grpoidcl
|- ( G e. GrpOp -> U e. X )

Proof

Step Hyp Ref Expression
1 grpoidval.1
 |-  X = ran G
2 grpoidval.2
 |-  U = ( GId ` G )
3 1 2 grpoidval
 |-  ( G e. GrpOp -> U = ( iota_ u e. X A. x e. X ( u G x ) = x ) )
4 1 grpoideu
 |-  ( G e. GrpOp -> E! u e. X A. x e. X ( u G x ) = x )
5 riotacl
 |-  ( E! u e. X A. x e. X ( u G x ) = x -> ( iota_ u e. X A. x e. X ( u G x ) = x ) e. X )
6 4 5 syl
 |-  ( G e. GrpOp -> ( iota_ u e. X A. x e. X ( u G x ) = x ) e. X )
7 3 6 eqeltrd
 |-  ( G e. GrpOp -> U e. X )