Step |
Hyp |
Ref |
Expression |
1 |
|
grpoidval.1 |
|- X = ran G |
2 |
|
grpoidval.2 |
|- U = ( GId ` G ) |
3 |
1 2
|
grpoidval |
|- ( G e. GrpOp -> U = ( iota_ u e. X A. x e. X ( u G x ) = x ) ) |
4 |
1
|
grpoideu |
|- ( G e. GrpOp -> E! u e. X A. x e. X ( u G x ) = x ) |
5 |
|
riotacl2 |
|- ( E! u e. X A. x e. X ( u G x ) = x -> ( iota_ u e. X A. x e. X ( u G x ) = x ) e. { u e. X | A. x e. X ( u G x ) = x } ) |
6 |
4 5
|
syl |
|- ( G e. GrpOp -> ( iota_ u e. X A. x e. X ( u G x ) = x ) e. { u e. X | A. x e. X ( u G x ) = x } ) |
7 |
3 6
|
eqeltrd |
|- ( G e. GrpOp -> U e. { u e. X | A. x e. X ( u G x ) = x } ) |
8 |
|
simpll |
|- ( ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> ( u G x ) = x ) |
9 |
8
|
ralimi |
|- ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) |
10 |
9
|
rgenw |
|- A. u e. X ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) |
11 |
10
|
a1i |
|- ( G e. GrpOp -> A. u e. X ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) ) |
12 |
1
|
grpoidinv |
|- ( G e. GrpOp -> E. u e. X A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) ) |
13 |
11 12 4
|
3jca |
|- ( G e. GrpOp -> ( A. u e. X ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) /\ E. u e. X A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) /\ E! u e. X A. x e. X ( u G x ) = x ) ) |
14 |
|
reupick2 |
|- ( ( ( A. u e. X ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) /\ E. u e. X A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) /\ E! u e. X A. x e. X ( u G x ) = x ) /\ u e. X ) -> ( A. x e. X ( u G x ) = x <-> A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) ) ) |
15 |
13 14
|
sylan |
|- ( ( G e. GrpOp /\ u e. X ) -> ( A. x e. X ( u G x ) = x <-> A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) ) ) |
16 |
15
|
rabbidva |
|- ( G e. GrpOp -> { u e. X | A. x e. X ( u G x ) = x } = { u e. X | A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) } ) |
17 |
7 16
|
eleqtrd |
|- ( G e. GrpOp -> U e. { u e. X | A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) } ) |
18 |
|
oveq1 |
|- ( u = U -> ( u G x ) = ( U G x ) ) |
19 |
18
|
eqeq1d |
|- ( u = U -> ( ( u G x ) = x <-> ( U G x ) = x ) ) |
20 |
|
oveq2 |
|- ( u = U -> ( x G u ) = ( x G U ) ) |
21 |
20
|
eqeq1d |
|- ( u = U -> ( ( x G u ) = x <-> ( x G U ) = x ) ) |
22 |
19 21
|
anbi12d |
|- ( u = U -> ( ( ( u G x ) = x /\ ( x G u ) = x ) <-> ( ( U G x ) = x /\ ( x G U ) = x ) ) ) |
23 |
|
eqeq2 |
|- ( u = U -> ( ( y G x ) = u <-> ( y G x ) = U ) ) |
24 |
|
eqeq2 |
|- ( u = U -> ( ( x G y ) = u <-> ( x G y ) = U ) ) |
25 |
23 24
|
anbi12d |
|- ( u = U -> ( ( ( y G x ) = u /\ ( x G y ) = u ) <-> ( ( y G x ) = U /\ ( x G y ) = U ) ) ) |
26 |
25
|
rexbidv |
|- ( u = U -> ( E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) <-> E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) |
27 |
22 26
|
anbi12d |
|- ( u = U -> ( ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) <-> ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) ) |
28 |
27
|
ralbidv |
|- ( u = U -> ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) <-> A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) ) |
29 |
28
|
elrab |
|- ( U e. { u e. X | A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) } <-> ( U e. X /\ A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) ) |
30 |
17 29
|
sylib |
|- ( G e. GrpOp -> ( U e. X /\ A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) ) |
31 |
30
|
simprd |
|- ( G e. GrpOp -> A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) |
32 |
|
oveq2 |
|- ( x = A -> ( U G x ) = ( U G A ) ) |
33 |
|
id |
|- ( x = A -> x = A ) |
34 |
32 33
|
eqeq12d |
|- ( x = A -> ( ( U G x ) = x <-> ( U G A ) = A ) ) |
35 |
|
oveq1 |
|- ( x = A -> ( x G U ) = ( A G U ) ) |
36 |
35 33
|
eqeq12d |
|- ( x = A -> ( ( x G U ) = x <-> ( A G U ) = A ) ) |
37 |
34 36
|
anbi12d |
|- ( x = A -> ( ( ( U G x ) = x /\ ( x G U ) = x ) <-> ( ( U G A ) = A /\ ( A G U ) = A ) ) ) |
38 |
|
oveq2 |
|- ( x = A -> ( y G x ) = ( y G A ) ) |
39 |
38
|
eqeq1d |
|- ( x = A -> ( ( y G x ) = U <-> ( y G A ) = U ) ) |
40 |
|
oveq1 |
|- ( x = A -> ( x G y ) = ( A G y ) ) |
41 |
40
|
eqeq1d |
|- ( x = A -> ( ( x G y ) = U <-> ( A G y ) = U ) ) |
42 |
39 41
|
anbi12d |
|- ( x = A -> ( ( ( y G x ) = U /\ ( x G y ) = U ) <-> ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
43 |
42
|
rexbidv |
|- ( x = A -> ( E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) <-> E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
44 |
37 43
|
anbi12d |
|- ( x = A -> ( ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) <-> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) ) |
45 |
44
|
rspccva |
|- ( ( A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
46 |
31 45
|
sylan |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |