| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpoidval.1 |  |-  X = ran G | 
						
							| 2 |  | grpoidval.2 |  |-  U = ( GId ` G ) | 
						
							| 3 | 1 2 | grpoidval |  |-  ( G e. GrpOp -> U = ( iota_ u e. X A. x e. X ( u G x ) = x ) ) | 
						
							| 4 | 1 | grpoideu |  |-  ( G e. GrpOp -> E! u e. X A. x e. X ( u G x ) = x ) | 
						
							| 5 |  | riotacl2 |  |-  ( E! u e. X A. x e. X ( u G x ) = x -> ( iota_ u e. X A. x e. X ( u G x ) = x ) e. { u e. X | A. x e. X ( u G x ) = x } ) | 
						
							| 6 | 4 5 | syl |  |-  ( G e. GrpOp -> ( iota_ u e. X A. x e. X ( u G x ) = x ) e. { u e. X | A. x e. X ( u G x ) = x } ) | 
						
							| 7 | 3 6 | eqeltrd |  |-  ( G e. GrpOp -> U e. { u e. X | A. x e. X ( u G x ) = x } ) | 
						
							| 8 |  | simpll |  |-  ( ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> ( u G x ) = x ) | 
						
							| 9 | 8 | ralimi |  |-  ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) | 
						
							| 10 | 9 | rgenw |  |-  A. u e. X ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) | 
						
							| 11 | 10 | a1i |  |-  ( G e. GrpOp -> A. u e. X ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) ) | 
						
							| 12 | 1 | grpoidinv |  |-  ( G e. GrpOp -> E. u e. X A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) ) | 
						
							| 13 | 11 12 4 | 3jca |  |-  ( G e. GrpOp -> ( A. u e. X ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) /\ E. u e. X A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) /\ E! u e. X A. x e. X ( u G x ) = x ) ) | 
						
							| 14 |  | reupick2 |  |-  ( ( ( A. u e. X ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) -> A. x e. X ( u G x ) = x ) /\ E. u e. X A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) /\ E! u e. X A. x e. X ( u G x ) = x ) /\ u e. X ) -> ( A. x e. X ( u G x ) = x <-> A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) ) ) | 
						
							| 15 | 13 14 | sylan |  |-  ( ( G e. GrpOp /\ u e. X ) -> ( A. x e. X ( u G x ) = x <-> A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) ) ) | 
						
							| 16 | 15 | rabbidva |  |-  ( G e. GrpOp -> { u e. X | A. x e. X ( u G x ) = x } = { u e. X | A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) } ) | 
						
							| 17 | 7 16 | eleqtrd |  |-  ( G e. GrpOp -> U e. { u e. X | A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) } ) | 
						
							| 18 |  | oveq1 |  |-  ( u = U -> ( u G x ) = ( U G x ) ) | 
						
							| 19 | 18 | eqeq1d |  |-  ( u = U -> ( ( u G x ) = x <-> ( U G x ) = x ) ) | 
						
							| 20 |  | oveq2 |  |-  ( u = U -> ( x G u ) = ( x G U ) ) | 
						
							| 21 | 20 | eqeq1d |  |-  ( u = U -> ( ( x G u ) = x <-> ( x G U ) = x ) ) | 
						
							| 22 | 19 21 | anbi12d |  |-  ( u = U -> ( ( ( u G x ) = x /\ ( x G u ) = x ) <-> ( ( U G x ) = x /\ ( x G U ) = x ) ) ) | 
						
							| 23 |  | eqeq2 |  |-  ( u = U -> ( ( y G x ) = u <-> ( y G x ) = U ) ) | 
						
							| 24 |  | eqeq2 |  |-  ( u = U -> ( ( x G y ) = u <-> ( x G y ) = U ) ) | 
						
							| 25 | 23 24 | anbi12d |  |-  ( u = U -> ( ( ( y G x ) = u /\ ( x G y ) = u ) <-> ( ( y G x ) = U /\ ( x G y ) = U ) ) ) | 
						
							| 26 | 25 | rexbidv |  |-  ( u = U -> ( E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) <-> E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) | 
						
							| 27 | 22 26 | anbi12d |  |-  ( u = U -> ( ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) <-> ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) ) | 
						
							| 28 | 27 | ralbidv |  |-  ( u = U -> ( A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) <-> A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) ) | 
						
							| 29 | 28 | elrab |  |-  ( U e. { u e. X | A. x e. X ( ( ( u G x ) = x /\ ( x G u ) = x ) /\ E. y e. X ( ( y G x ) = u /\ ( x G y ) = u ) ) } <-> ( U e. X /\ A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) ) | 
						
							| 30 | 17 29 | sylib |  |-  ( G e. GrpOp -> ( U e. X /\ A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) ) | 
						
							| 31 | 30 | simprd |  |-  ( G e. GrpOp -> A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) ) | 
						
							| 32 |  | oveq2 |  |-  ( x = A -> ( U G x ) = ( U G A ) ) | 
						
							| 33 |  | id |  |-  ( x = A -> x = A ) | 
						
							| 34 | 32 33 | eqeq12d |  |-  ( x = A -> ( ( U G x ) = x <-> ( U G A ) = A ) ) | 
						
							| 35 |  | oveq1 |  |-  ( x = A -> ( x G U ) = ( A G U ) ) | 
						
							| 36 | 35 33 | eqeq12d |  |-  ( x = A -> ( ( x G U ) = x <-> ( A G U ) = A ) ) | 
						
							| 37 | 34 36 | anbi12d |  |-  ( x = A -> ( ( ( U G x ) = x /\ ( x G U ) = x ) <-> ( ( U G A ) = A /\ ( A G U ) = A ) ) ) | 
						
							| 38 |  | oveq2 |  |-  ( x = A -> ( y G x ) = ( y G A ) ) | 
						
							| 39 | 38 | eqeq1d |  |-  ( x = A -> ( ( y G x ) = U <-> ( y G A ) = U ) ) | 
						
							| 40 |  | oveq1 |  |-  ( x = A -> ( x G y ) = ( A G y ) ) | 
						
							| 41 | 40 | eqeq1d |  |-  ( x = A -> ( ( x G y ) = U <-> ( A G y ) = U ) ) | 
						
							| 42 | 39 41 | anbi12d |  |-  ( x = A -> ( ( ( y G x ) = U /\ ( x G y ) = U ) <-> ( ( y G A ) = U /\ ( A G y ) = U ) ) ) | 
						
							| 43 | 42 | rexbidv |  |-  ( x = A -> ( E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) <-> E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) | 
						
							| 44 | 37 43 | anbi12d |  |-  ( x = A -> ( ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) <-> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) ) | 
						
							| 45 | 44 | rspccva |  |-  ( ( A. x e. X ( ( ( U G x ) = x /\ ( x G U ) = x ) /\ E. y e. X ( ( y G x ) = U /\ ( x G y ) = U ) ) /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) | 
						
							| 46 | 31 45 | sylan |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |