| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpfo.1 |  |-  X = ran G | 
						
							| 2 |  | id |  |-  ( ( Y e. X /\ A e. X /\ A e. X ) -> ( Y e. X /\ A e. X /\ A e. X ) ) | 
						
							| 3 | 2 | 3anidm23 |  |-  ( ( Y e. X /\ A e. X ) -> ( Y e. X /\ A e. X /\ A e. X ) ) | 
						
							| 4 | 1 | grpoass |  |-  ( ( G e. GrpOp /\ ( Y e. X /\ A e. X /\ A e. X ) ) -> ( ( Y G A ) G A ) = ( Y G ( A G A ) ) ) | 
						
							| 5 | 3 4 | sylan2 |  |-  ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) -> ( ( Y G A ) G A ) = ( Y G ( A G A ) ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( ( Y G A ) G A ) = ( Y G ( A G A ) ) ) | 
						
							| 7 |  | oveq1 |  |-  ( ( Y G A ) = U -> ( ( Y G A ) G A ) = ( U G A ) ) | 
						
							| 8 | 7 | ad2antrl |  |-  ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( ( Y G A ) G A ) = ( U G A ) ) | 
						
							| 9 |  | oveq2 |  |-  ( ( A G A ) = A -> ( Y G ( A G A ) ) = ( Y G A ) ) | 
						
							| 10 | 9 | ad2antll |  |-  ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( Y G ( A G A ) ) = ( Y G A ) ) | 
						
							| 11 |  | simprl |  |-  ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( Y G A ) = U ) | 
						
							| 12 | 10 11 | eqtrd |  |-  ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( Y G ( A G A ) ) = U ) | 
						
							| 13 | 6 8 12 | 3eqtr3d |  |-  ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( U G A ) = U ) |