Step |
Hyp |
Ref |
Expression |
1 |
|
grpfo.1 |
|- X = ran G |
2 |
|
id |
|- ( ( Y e. X /\ A e. X /\ A e. X ) -> ( Y e. X /\ A e. X /\ A e. X ) ) |
3 |
2
|
3anidm23 |
|- ( ( Y e. X /\ A e. X ) -> ( Y e. X /\ A e. X /\ A e. X ) ) |
4 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( Y e. X /\ A e. X /\ A e. X ) ) -> ( ( Y G A ) G A ) = ( Y G ( A G A ) ) ) |
5 |
3 4
|
sylan2 |
|- ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) -> ( ( Y G A ) G A ) = ( Y G ( A G A ) ) ) |
6 |
5
|
adantr |
|- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( ( Y G A ) G A ) = ( Y G ( A G A ) ) ) |
7 |
|
oveq1 |
|- ( ( Y G A ) = U -> ( ( Y G A ) G A ) = ( U G A ) ) |
8 |
7
|
ad2antrl |
|- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( ( Y G A ) G A ) = ( U G A ) ) |
9 |
|
oveq2 |
|- ( ( A G A ) = A -> ( Y G ( A G A ) ) = ( Y G A ) ) |
10 |
9
|
ad2antll |
|- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( Y G ( A G A ) ) = ( Y G A ) ) |
11 |
|
simprl |
|- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( Y G A ) = U ) |
12 |
10 11
|
eqtrd |
|- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( Y G ( A G A ) ) = U ) |
13 |
6 8 12
|
3eqtr3d |
|- ( ( ( G e. GrpOp /\ ( Y e. X /\ A e. X ) ) /\ ( ( Y G A ) = U /\ ( A G A ) = A ) ) -> ( U G A ) = U ) |