| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpfo.1 |
|- X = ran G |
| 2 |
|
simpll |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> G e. GrpOp ) |
| 3 |
|
simplr |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> A e. X ) |
| 4 |
|
simpr |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> y e. X ) |
| 5 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( A e. X /\ y e. X /\ A e. X ) ) -> ( ( A G y ) G A ) = ( A G ( y G A ) ) ) |
| 6 |
2 3 4 3 5
|
syl13anc |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> ( ( A G y ) G A ) = ( A G ( y G A ) ) ) |
| 7 |
|
oveq2 |
|- ( ( y G A ) = U -> ( A G ( y G A ) ) = ( A G U ) ) |
| 8 |
6 7
|
sylan9eq |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ ( y G A ) = U ) -> ( ( A G y ) G A ) = ( A G U ) ) |
| 9 |
|
oveq1 |
|- ( ( A G y ) = U -> ( ( A G y ) G A ) = ( U G A ) ) |
| 10 |
8 9
|
sylan9req |
|- ( ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ ( y G A ) = U ) /\ ( A G y ) = U ) -> ( A G U ) = ( U G A ) ) |
| 11 |
10
|
anasss |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ ( ( y G A ) = U /\ ( A G y ) = U ) ) -> ( A G U ) = ( U G A ) ) |
| 12 |
11
|
r19.29an |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) -> ( A G U ) = ( U G A ) ) |