Step |
Hyp |
Ref |
Expression |
1 |
|
grpinv.1 |
|- X = ran G |
2 |
|
grpinv.2 |
|- U = ( GId ` G ) |
3 |
|
grpinv.3 |
|- N = ( inv ` G ) |
4 |
1 2 3
|
grpoinvval |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) = ( iota_ y e. X ( y G A ) = U ) ) |
5 |
1 2
|
grpoinveu |
|- ( ( G e. GrpOp /\ A e. X ) -> E! y e. X ( y G A ) = U ) |
6 |
|
riotacl2 |
|- ( E! y e. X ( y G A ) = U -> ( iota_ y e. X ( y G A ) = U ) e. { y e. X | ( y G A ) = U } ) |
7 |
5 6
|
syl |
|- ( ( G e. GrpOp /\ A e. X ) -> ( iota_ y e. X ( y G A ) = U ) e. { y e. X | ( y G A ) = U } ) |
8 |
4 7
|
eqeltrd |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. { y e. X | ( y G A ) = U } ) |
9 |
|
simpl |
|- ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) |
10 |
9
|
rgenw |
|- A. y e. X ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) |
11 |
10
|
a1i |
|- ( ( G e. GrpOp /\ A e. X ) -> A. y e. X ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) ) |
12 |
1 2
|
grpoidinv2 |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
13 |
12
|
simprd |
|- ( ( G e. GrpOp /\ A e. X ) -> E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) |
14 |
11 13 5
|
3jca |
|- ( ( G e. GrpOp /\ A e. X ) -> ( A. y e. X ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) /\ E! y e. X ( y G A ) = U ) ) |
15 |
|
reupick2 |
|- ( ( ( A. y e. X ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) /\ E! y e. X ( y G A ) = U ) /\ y e. X ) -> ( ( y G A ) = U <-> ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
16 |
14 15
|
sylan |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> ( ( y G A ) = U <-> ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
17 |
16
|
rabbidva |
|- ( ( G e. GrpOp /\ A e. X ) -> { y e. X | ( y G A ) = U } = { y e. X | ( ( y G A ) = U /\ ( A G y ) = U ) } ) |
18 |
8 17
|
eleqtrd |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. { y e. X | ( ( y G A ) = U /\ ( A G y ) = U ) } ) |
19 |
|
oveq1 |
|- ( y = ( N ` A ) -> ( y G A ) = ( ( N ` A ) G A ) ) |
20 |
19
|
eqeq1d |
|- ( y = ( N ` A ) -> ( ( y G A ) = U <-> ( ( N ` A ) G A ) = U ) ) |
21 |
|
oveq2 |
|- ( y = ( N ` A ) -> ( A G y ) = ( A G ( N ` A ) ) ) |
22 |
21
|
eqeq1d |
|- ( y = ( N ` A ) -> ( ( A G y ) = U <-> ( A G ( N ` A ) ) = U ) ) |
23 |
20 22
|
anbi12d |
|- ( y = ( N ` A ) -> ( ( ( y G A ) = U /\ ( A G y ) = U ) <-> ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) ) |
24 |
23
|
elrab |
|- ( ( N ` A ) e. { y e. X | ( ( y G A ) = U /\ ( A G y ) = U ) } <-> ( ( N ` A ) e. X /\ ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) ) |
25 |
18 24
|
sylib |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) e. X /\ ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) ) |
26 |
25
|
simprd |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) |