Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvcl.1 |
|- X = ran G |
2 |
|
grpinvcl.2 |
|- N = ( inv ` G ) |
3 |
|
eqid |
|- ( GId ` G ) = ( GId ` G ) |
4 |
1 3 2
|
grpoinvval |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) = ( iota_ y e. X ( y G A ) = ( GId ` G ) ) ) |
5 |
1 3
|
grpoinveu |
|- ( ( G e. GrpOp /\ A e. X ) -> E! y e. X ( y G A ) = ( GId ` G ) ) |
6 |
|
riotacl |
|- ( E! y e. X ( y G A ) = ( GId ` G ) -> ( iota_ y e. X ( y G A ) = ( GId ` G ) ) e. X ) |
7 |
5 6
|
syl |
|- ( ( G e. GrpOp /\ A e. X ) -> ( iota_ y e. X ( y G A ) = ( GId ` G ) ) e. X ) |
8 |
4 7
|
eqeltrd |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) |