| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinvcl.1 |  |-  X = ran G | 
						
							| 2 |  | grpinvcl.2 |  |-  N = ( inv ` G ) | 
						
							| 3 |  | eqid |  |-  ( GId ` G ) = ( GId ` G ) | 
						
							| 4 | 1 3 2 | grpoinvval |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) = ( iota_ y e. X ( y G A ) = ( GId ` G ) ) ) | 
						
							| 5 | 1 3 | grpoinveu |  |-  ( ( G e. GrpOp /\ A e. X ) -> E! y e. X ( y G A ) = ( GId ` G ) ) | 
						
							| 6 |  | riotacl |  |-  ( E! y e. X ( y G A ) = ( GId ` G ) -> ( iota_ y e. X ( y G A ) = ( GId ` G ) ) e. X ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( iota_ y e. X ( y G A ) = ( GId ` G ) ) e. X ) | 
						
							| 8 | 4 7 | eqeltrd |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) |