Step |
Hyp |
Ref |
Expression |
1 |
|
grpdiv.1 |
|- X = ran G |
2 |
|
grpdiv.2 |
|- N = ( inv ` G ) |
3 |
|
grpdiv.3 |
|- D = ( /g ` G ) |
4 |
1 2 3
|
grpodivval |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) ) |
5 |
4
|
fveq2d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A D B ) ) = ( N ` ( A G ( N ` B ) ) ) ) |
6 |
1 2
|
grpoinvcl |
|- ( ( G e. GrpOp /\ B e. X ) -> ( N ` B ) e. X ) |
7 |
6
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` B ) e. X ) |
8 |
1 2
|
grpoinvop |
|- ( ( G e. GrpOp /\ A e. X /\ ( N ` B ) e. X ) -> ( N ` ( A G ( N ` B ) ) ) = ( ( N ` ( N ` B ) ) G ( N ` A ) ) ) |
9 |
7 8
|
syld3an3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A G ( N ` B ) ) ) = ( ( N ` ( N ` B ) ) G ( N ` A ) ) ) |
10 |
1 2
|
grpo2inv |
|- ( ( G e. GrpOp /\ B e. X ) -> ( N ` ( N ` B ) ) = B ) |
11 |
10
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( N ` B ) ) = B ) |
12 |
11
|
oveq1d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` ( N ` B ) ) G ( N ` A ) ) = ( B G ( N ` A ) ) ) |
13 |
1 2 3
|
grpodivval |
|- ( ( G e. GrpOp /\ B e. X /\ A e. X ) -> ( B D A ) = ( B G ( N ` A ) ) ) |
14 |
13
|
3com23 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B D A ) = ( B G ( N ` A ) ) ) |
15 |
12 14
|
eqtr4d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` ( N ` B ) ) G ( N ` A ) ) = ( B D A ) ) |
16 |
5 9 15
|
3eqtrd |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A D B ) ) = ( B D A ) ) |