Metamath Proof Explorer


Theorem grpoinvdiv

Description: Inverse of a group division. (Contributed by NM, 24-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1
|- X = ran G
grpdiv.2
|- N = ( inv ` G )
grpdiv.3
|- D = ( /g ` G )
Assertion grpoinvdiv
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A D B ) ) = ( B D A ) )

Proof

Step Hyp Ref Expression
1 grpdiv.1
 |-  X = ran G
2 grpdiv.2
 |-  N = ( inv ` G )
3 grpdiv.3
 |-  D = ( /g ` G )
4 1 2 3 grpodivval
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) )
5 4 fveq2d
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A D B ) ) = ( N ` ( A G ( N ` B ) ) ) )
6 1 2 grpoinvcl
 |-  ( ( G e. GrpOp /\ B e. X ) -> ( N ` B ) e. X )
7 6 3adant2
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` B ) e. X )
8 1 2 grpoinvop
 |-  ( ( G e. GrpOp /\ A e. X /\ ( N ` B ) e. X ) -> ( N ` ( A G ( N ` B ) ) ) = ( ( N ` ( N ` B ) ) G ( N ` A ) ) )
9 7 8 syld3an3
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A G ( N ` B ) ) ) = ( ( N ` ( N ` B ) ) G ( N ` A ) ) )
10 1 2 grpo2inv
 |-  ( ( G e. GrpOp /\ B e. X ) -> ( N ` ( N ` B ) ) = B )
11 10 3adant2
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( N ` B ) ) = B )
12 11 oveq1d
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` ( N ` B ) ) G ( N ` A ) ) = ( B G ( N ` A ) ) )
13 1 2 3 grpodivval
 |-  ( ( G e. GrpOp /\ B e. X /\ A e. X ) -> ( B D A ) = ( B G ( N ` A ) ) )
14 13 3com23
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B D A ) = ( B G ( N ` A ) ) )
15 12 14 eqtr4d
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` ( N ` B ) ) G ( N ` A ) ) = ( B D A ) )
16 5 9 15 3eqtrd
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A D B ) ) = ( B D A ) )