| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdiv.1 |  |-  X = ran G | 
						
							| 2 |  | grpdiv.2 |  |-  N = ( inv ` G ) | 
						
							| 3 |  | grpdiv.3 |  |-  D = ( /g ` G ) | 
						
							| 4 | 1 2 3 | grpodivval |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( N ` B ) ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A D B ) ) = ( N ` ( A G ( N ` B ) ) ) ) | 
						
							| 6 | 1 2 | grpoinvcl |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( N ` B ) e. X ) | 
						
							| 7 | 6 | 3adant2 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` B ) e. X ) | 
						
							| 8 | 1 2 | grpoinvop |  |-  ( ( G e. GrpOp /\ A e. X /\ ( N ` B ) e. X ) -> ( N ` ( A G ( N ` B ) ) ) = ( ( N ` ( N ` B ) ) G ( N ` A ) ) ) | 
						
							| 9 | 7 8 | syld3an3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A G ( N ` B ) ) ) = ( ( N ` ( N ` B ) ) G ( N ` A ) ) ) | 
						
							| 10 | 1 2 | grpo2inv |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( N ` ( N ` B ) ) = B ) | 
						
							| 11 | 10 | 3adant2 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( N ` B ) ) = B ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` ( N ` B ) ) G ( N ` A ) ) = ( B G ( N ` A ) ) ) | 
						
							| 13 | 1 2 3 | grpodivval |  |-  ( ( G e. GrpOp /\ B e. X /\ A e. X ) -> ( B D A ) = ( B G ( N ` A ) ) ) | 
						
							| 14 | 13 | 3com23 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B D A ) = ( B G ( N ` A ) ) ) | 
						
							| 15 | 12 14 | eqtr4d |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` ( N ` B ) ) G ( N ` A ) ) = ( B D A ) ) | 
						
							| 16 | 5 9 15 | 3eqtrd |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A D B ) ) = ( B D A ) ) |