Step |
Hyp |
Ref |
Expression |
1 |
|
grpoinveu.1 |
|- X = ran G |
2 |
|
grpoinveu.2 |
|- U = ( GId ` G ) |
3 |
1 2
|
grpoidinv2 |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) ) |
4 |
|
simpl |
|- ( ( ( y G A ) = U /\ ( A G y ) = U ) -> ( y G A ) = U ) |
5 |
4
|
reximi |
|- ( E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) -> E. y e. X ( y G A ) = U ) |
6 |
5
|
adantl |
|- ( ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) -> E. y e. X ( y G A ) = U ) |
7 |
3 6
|
syl |
|- ( ( G e. GrpOp /\ A e. X ) -> E. y e. X ( y G A ) = U ) |
8 |
|
eqtr3 |
|- ( ( ( y G A ) = U /\ ( z G A ) = U ) -> ( y G A ) = ( z G A ) ) |
9 |
1
|
grporcan |
|- ( ( G e. GrpOp /\ ( y e. X /\ z e. X /\ A e. X ) ) -> ( ( y G A ) = ( z G A ) <-> y = z ) ) |
10 |
8 9
|
syl5ib |
|- ( ( G e. GrpOp /\ ( y e. X /\ z e. X /\ A e. X ) ) -> ( ( ( y G A ) = U /\ ( z G A ) = U ) -> y = z ) ) |
11 |
10
|
3exp2 |
|- ( G e. GrpOp -> ( y e. X -> ( z e. X -> ( A e. X -> ( ( ( y G A ) = U /\ ( z G A ) = U ) -> y = z ) ) ) ) ) |
12 |
11
|
com24 |
|- ( G e. GrpOp -> ( A e. X -> ( z e. X -> ( y e. X -> ( ( ( y G A ) = U /\ ( z G A ) = U ) -> y = z ) ) ) ) ) |
13 |
12
|
imp41 |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ z e. X ) /\ y e. X ) -> ( ( ( y G A ) = U /\ ( z G A ) = U ) -> y = z ) ) |
14 |
13
|
an32s |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ z e. X ) -> ( ( ( y G A ) = U /\ ( z G A ) = U ) -> y = z ) ) |
15 |
14
|
expd |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ z e. X ) -> ( ( y G A ) = U -> ( ( z G A ) = U -> y = z ) ) ) |
16 |
15
|
ralrimdva |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> ( ( y G A ) = U -> A. z e. X ( ( z G A ) = U -> y = z ) ) ) |
17 |
16
|
ancld |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> ( ( y G A ) = U -> ( ( y G A ) = U /\ A. z e. X ( ( z G A ) = U -> y = z ) ) ) ) |
18 |
17
|
reximdva |
|- ( ( G e. GrpOp /\ A e. X ) -> ( E. y e. X ( y G A ) = U -> E. y e. X ( ( y G A ) = U /\ A. z e. X ( ( z G A ) = U -> y = z ) ) ) ) |
19 |
7 18
|
mpd |
|- ( ( G e. GrpOp /\ A e. X ) -> E. y e. X ( ( y G A ) = U /\ A. z e. X ( ( z G A ) = U -> y = z ) ) ) |
20 |
|
oveq1 |
|- ( y = z -> ( y G A ) = ( z G A ) ) |
21 |
20
|
eqeq1d |
|- ( y = z -> ( ( y G A ) = U <-> ( z G A ) = U ) ) |
22 |
21
|
reu8 |
|- ( E! y e. X ( y G A ) = U <-> E. y e. X ( ( y G A ) = U /\ A. z e. X ( ( z G A ) = U -> y = z ) ) ) |
23 |
19 22
|
sylibr |
|- ( ( G e. GrpOp /\ A e. X ) -> E! y e. X ( y G A ) = U ) |