Step |
Hyp |
Ref |
Expression |
1 |
|
grpasscan1.1 |
|- X = ran G |
2 |
|
grpasscan1.2 |
|- N = ( inv ` G ) |
3 |
|
riotaex |
|- ( iota_ y e. X ( y G x ) = ( GId ` G ) ) e. _V |
4 |
|
eqid |
|- ( x e. X |-> ( iota_ y e. X ( y G x ) = ( GId ` G ) ) ) = ( x e. X |-> ( iota_ y e. X ( y G x ) = ( GId ` G ) ) ) |
5 |
3 4
|
fnmpti |
|- ( x e. X |-> ( iota_ y e. X ( y G x ) = ( GId ` G ) ) ) Fn X |
6 |
|
eqid |
|- ( GId ` G ) = ( GId ` G ) |
7 |
1 6 2
|
grpoinvfval |
|- ( G e. GrpOp -> N = ( x e. X |-> ( iota_ y e. X ( y G x ) = ( GId ` G ) ) ) ) |
8 |
7
|
fneq1d |
|- ( G e. GrpOp -> ( N Fn X <-> ( x e. X |-> ( iota_ y e. X ( y G x ) = ( GId ` G ) ) ) Fn X ) ) |
9 |
5 8
|
mpbiri |
|- ( G e. GrpOp -> N Fn X ) |
10 |
|
fnrnfv |
|- ( N Fn X -> ran N = { y | E. x e. X y = ( N ` x ) } ) |
11 |
9 10
|
syl |
|- ( G e. GrpOp -> ran N = { y | E. x e. X y = ( N ` x ) } ) |
12 |
1 2
|
grpoinvcl |
|- ( ( G e. GrpOp /\ y e. X ) -> ( N ` y ) e. X ) |
13 |
1 2
|
grpo2inv |
|- ( ( G e. GrpOp /\ y e. X ) -> ( N ` ( N ` y ) ) = y ) |
14 |
13
|
eqcomd |
|- ( ( G e. GrpOp /\ y e. X ) -> y = ( N ` ( N ` y ) ) ) |
15 |
|
fveq2 |
|- ( x = ( N ` y ) -> ( N ` x ) = ( N ` ( N ` y ) ) ) |
16 |
15
|
rspceeqv |
|- ( ( ( N ` y ) e. X /\ y = ( N ` ( N ` y ) ) ) -> E. x e. X y = ( N ` x ) ) |
17 |
12 14 16
|
syl2anc |
|- ( ( G e. GrpOp /\ y e. X ) -> E. x e. X y = ( N ` x ) ) |
18 |
17
|
ex |
|- ( G e. GrpOp -> ( y e. X -> E. x e. X y = ( N ` x ) ) ) |
19 |
|
simpr |
|- ( ( ( G e. GrpOp /\ x e. X ) /\ y = ( N ` x ) ) -> y = ( N ` x ) ) |
20 |
1 2
|
grpoinvcl |
|- ( ( G e. GrpOp /\ x e. X ) -> ( N ` x ) e. X ) |
21 |
20
|
adantr |
|- ( ( ( G e. GrpOp /\ x e. X ) /\ y = ( N ` x ) ) -> ( N ` x ) e. X ) |
22 |
19 21
|
eqeltrd |
|- ( ( ( G e. GrpOp /\ x e. X ) /\ y = ( N ` x ) ) -> y e. X ) |
23 |
22
|
rexlimdva2 |
|- ( G e. GrpOp -> ( E. x e. X y = ( N ` x ) -> y e. X ) ) |
24 |
18 23
|
impbid |
|- ( G e. GrpOp -> ( y e. X <-> E. x e. X y = ( N ` x ) ) ) |
25 |
24
|
abbi2dv |
|- ( G e. GrpOp -> X = { y | E. x e. X y = ( N ` x ) } ) |
26 |
11 25
|
eqtr4d |
|- ( G e. GrpOp -> ran N = X ) |
27 |
|
fveq2 |
|- ( ( N ` x ) = ( N ` y ) -> ( N ` ( N ` x ) ) = ( N ` ( N ` y ) ) ) |
28 |
1 2
|
grpo2inv |
|- ( ( G e. GrpOp /\ x e. X ) -> ( N ` ( N ` x ) ) = x ) |
29 |
28 13
|
eqeqan12d |
|- ( ( ( G e. GrpOp /\ x e. X ) /\ ( G e. GrpOp /\ y e. X ) ) -> ( ( N ` ( N ` x ) ) = ( N ` ( N ` y ) ) <-> x = y ) ) |
30 |
29
|
anandis |
|- ( ( G e. GrpOp /\ ( x e. X /\ y e. X ) ) -> ( ( N ` ( N ` x ) ) = ( N ` ( N ` y ) ) <-> x = y ) ) |
31 |
27 30
|
syl5ib |
|- ( ( G e. GrpOp /\ ( x e. X /\ y e. X ) ) -> ( ( N ` x ) = ( N ` y ) -> x = y ) ) |
32 |
31
|
ralrimivva |
|- ( G e. GrpOp -> A. x e. X A. y e. X ( ( N ` x ) = ( N ` y ) -> x = y ) ) |
33 |
|
dff1o6 |
|- ( N : X -1-1-onto-> X <-> ( N Fn X /\ ran N = X /\ A. x e. X A. y e. X ( ( N ` x ) = ( N ` y ) -> x = y ) ) ) |
34 |
9 26 32 33
|
syl3anbrc |
|- ( G e. GrpOp -> N : X -1-1-onto-> X ) |