Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvfval.1 |
|- X = ran G |
2 |
|
grpinvfval.2 |
|- U = ( GId ` G ) |
3 |
|
grpinvfval.3 |
|- N = ( inv ` G ) |
4 |
|
rnexg |
|- ( G e. GrpOp -> ran G e. _V ) |
5 |
1 4
|
eqeltrid |
|- ( G e. GrpOp -> X e. _V ) |
6 |
|
mptexg |
|- ( X e. _V -> ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) e. _V ) |
7 |
5 6
|
syl |
|- ( G e. GrpOp -> ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) e. _V ) |
8 |
|
rneq |
|- ( g = G -> ran g = ran G ) |
9 |
8 1
|
eqtr4di |
|- ( g = G -> ran g = X ) |
10 |
|
oveq |
|- ( g = G -> ( y g x ) = ( y G x ) ) |
11 |
|
fveq2 |
|- ( g = G -> ( GId ` g ) = ( GId ` G ) ) |
12 |
11 2
|
eqtr4di |
|- ( g = G -> ( GId ` g ) = U ) |
13 |
10 12
|
eqeq12d |
|- ( g = G -> ( ( y g x ) = ( GId ` g ) <-> ( y G x ) = U ) ) |
14 |
9 13
|
riotaeqbidv |
|- ( g = G -> ( iota_ y e. ran g ( y g x ) = ( GId ` g ) ) = ( iota_ y e. X ( y G x ) = U ) ) |
15 |
9 14
|
mpteq12dv |
|- ( g = G -> ( x e. ran g |-> ( iota_ y e. ran g ( y g x ) = ( GId ` g ) ) ) = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ) |
16 |
|
df-ginv |
|- inv = ( g e. GrpOp |-> ( x e. ran g |-> ( iota_ y e. ran g ( y g x ) = ( GId ` g ) ) ) ) |
17 |
15 16
|
fvmptg |
|- ( ( G e. GrpOp /\ ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) e. _V ) -> ( inv ` G ) = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ) |
18 |
7 17
|
mpdan |
|- ( G e. GrpOp -> ( inv ` G ) = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ) |
19 |
3 18
|
syl5eq |
|- ( G e. GrpOp -> N = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ) |