| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinv.1 |  |-  X = ran G | 
						
							| 2 |  | grpinv.2 |  |-  U = ( GId ` G ) | 
						
							| 3 |  | grpinv.3 |  |-  N = ( inv ` G ) | 
						
							| 4 |  | oveq2 |  |-  ( ( N ` A ) = B -> ( A G ( N ` A ) ) = ( A G B ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( A G ( N ` A ) ) = ( A G B ) ) | 
						
							| 6 | 1 2 3 | grporinv |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = U ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( N ` A ) ) = U ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( A G ( N ` A ) ) = U ) | 
						
							| 9 | 5 8 | eqtr3d |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( A G B ) = U ) | 
						
							| 10 |  | oveq2 |  |-  ( ( A G B ) = U -> ( ( N ` A ) G ( A G B ) ) = ( ( N ` A ) G U ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( ( N ` A ) G ( A G B ) ) = ( ( N ` A ) G U ) ) | 
						
							| 12 | 1 2 3 | grpolinv |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G A ) = U ) | 
						
							| 13 | 12 | oveq1d |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G A ) G B ) = ( U G B ) ) | 
						
							| 14 | 13 | 3adant3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( ( N ` A ) G A ) G B ) = ( U G B ) ) | 
						
							| 15 | 1 3 | grpoinvcl |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) | 
						
							| 16 | 15 | adantrr |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( N ` A ) e. X ) | 
						
							| 17 |  | simprl |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> A e. X ) | 
						
							| 18 |  | simprr |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> B e. X ) | 
						
							| 19 | 16 17 18 | 3jca |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( N ` A ) e. X /\ A e. X /\ B e. X ) ) | 
						
							| 20 | 1 | grpoass |  |-  ( ( G e. GrpOp /\ ( ( N ` A ) e. X /\ A e. X /\ B e. X ) ) -> ( ( ( N ` A ) G A ) G B ) = ( ( N ` A ) G ( A G B ) ) ) | 
						
							| 21 | 19 20 | syldan |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( ( N ` A ) G A ) G B ) = ( ( N ` A ) G ( A G B ) ) ) | 
						
							| 22 | 21 | 3impb |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( ( N ` A ) G A ) G B ) = ( ( N ` A ) G ( A G B ) ) ) | 
						
							| 23 | 14 22 | eqtr3d |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( U G B ) = ( ( N ` A ) G ( A G B ) ) ) | 
						
							| 24 | 1 2 | grpolid |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( U G B ) = B ) | 
						
							| 25 | 24 | 3adant2 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( U G B ) = B ) | 
						
							| 26 | 23 25 | eqtr3d |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) G ( A G B ) ) = B ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( ( N ` A ) G ( A G B ) ) = B ) | 
						
							| 28 | 1 2 | grporid |  |-  ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( ( N ` A ) G U ) = ( N ` A ) ) | 
						
							| 29 | 15 28 | syldan |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G U ) = ( N ` A ) ) | 
						
							| 30 | 29 | 3adant3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) G U ) = ( N ` A ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( ( N ` A ) G U ) = ( N ` A ) ) | 
						
							| 32 | 11 27 31 | 3eqtr3rd |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( N ` A ) = B ) | 
						
							| 33 | 9 32 | impbida |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) = B <-> ( A G B ) = U ) ) |