Step |
Hyp |
Ref |
Expression |
1 |
|
grpinv.1 |
|- X = ran G |
2 |
|
grpinv.2 |
|- U = ( GId ` G ) |
3 |
|
grpinv.3 |
|- N = ( inv ` G ) |
4 |
|
oveq2 |
|- ( ( N ` A ) = B -> ( A G ( N ` A ) ) = ( A G B ) ) |
5 |
4
|
adantl |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( A G ( N ` A ) ) = ( A G B ) ) |
6 |
1 2 3
|
grporinv |
|- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = U ) |
7 |
6
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( N ` A ) ) = U ) |
8 |
7
|
adantr |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( A G ( N ` A ) ) = U ) |
9 |
5 8
|
eqtr3d |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( A G B ) = U ) |
10 |
|
oveq2 |
|- ( ( A G B ) = U -> ( ( N ` A ) G ( A G B ) ) = ( ( N ` A ) G U ) ) |
11 |
10
|
adantl |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( ( N ` A ) G ( A G B ) ) = ( ( N ` A ) G U ) ) |
12 |
1 2 3
|
grpolinv |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G A ) = U ) |
13 |
12
|
oveq1d |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G A ) G B ) = ( U G B ) ) |
14 |
13
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( ( N ` A ) G A ) G B ) = ( U G B ) ) |
15 |
1 3
|
grpoinvcl |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) |
16 |
15
|
adantrr |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( N ` A ) e. X ) |
17 |
|
simprl |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> A e. X ) |
18 |
|
simprr |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
19 |
16 17 18
|
3jca |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( N ` A ) e. X /\ A e. X /\ B e. X ) ) |
20 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( ( N ` A ) e. X /\ A e. X /\ B e. X ) ) -> ( ( ( N ` A ) G A ) G B ) = ( ( N ` A ) G ( A G B ) ) ) |
21 |
19 20
|
syldan |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( ( N ` A ) G A ) G B ) = ( ( N ` A ) G ( A G B ) ) ) |
22 |
21
|
3impb |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( ( N ` A ) G A ) G B ) = ( ( N ` A ) G ( A G B ) ) ) |
23 |
14 22
|
eqtr3d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( U G B ) = ( ( N ` A ) G ( A G B ) ) ) |
24 |
1 2
|
grpolid |
|- ( ( G e. GrpOp /\ B e. X ) -> ( U G B ) = B ) |
25 |
24
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( U G B ) = B ) |
26 |
23 25
|
eqtr3d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) G ( A G B ) ) = B ) |
27 |
26
|
adantr |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( ( N ` A ) G ( A G B ) ) = B ) |
28 |
1 2
|
grporid |
|- ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( ( N ` A ) G U ) = ( N ` A ) ) |
29 |
15 28
|
syldan |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G U ) = ( N ` A ) ) |
30 |
29
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) G U ) = ( N ` A ) ) |
31 |
30
|
adantr |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( ( N ` A ) G U ) = ( N ` A ) ) |
32 |
11 27 31
|
3eqtr3rd |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( N ` A ) = B ) |
33 |
9 32
|
impbida |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) = B <-> ( A G B ) = U ) ) |