| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinv.1 |  |-  X = ran G | 
						
							| 2 |  | grpinv.2 |  |-  U = ( GId ` G ) | 
						
							| 3 |  | grpinv.3 |  |-  N = ( inv ` G ) | 
						
							| 4 |  | oveq1 |  |-  ( ( N ` A ) = B -> ( ( N ` A ) G A ) = ( B G A ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( ( N ` A ) G A ) = ( B G A ) ) | 
						
							| 6 | 1 2 3 | grpolinv |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G A ) = U ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) G A ) = U ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( ( N ` A ) G A ) = U ) | 
						
							| 9 | 5 8 | eqtr3d |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( B G A ) = U ) | 
						
							| 10 | 1 3 | grpoinvcl |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) | 
						
							| 11 | 1 2 | grpolid |  |-  ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( U G ( N ` A ) ) = ( N ` A ) ) | 
						
							| 12 | 10 11 | syldan |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( U G ( N ` A ) ) = ( N ` A ) ) | 
						
							| 13 | 12 | 3adant3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( U G ( N ` A ) ) = ( N ` A ) ) | 
						
							| 14 | 13 | eqcomd |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` A ) = ( U G ( N ` A ) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( B G A ) = U ) -> ( N ` A ) = ( U G ( N ` A ) ) ) | 
						
							| 16 |  | oveq1 |  |-  ( ( B G A ) = U -> ( ( B G A ) G ( N ` A ) ) = ( U G ( N ` A ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( B G A ) = U ) -> ( ( B G A ) G ( N ` A ) ) = ( U G ( N ` A ) ) ) | 
						
							| 18 |  | simprr |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> B e. X ) | 
						
							| 19 |  | simprl |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> A e. X ) | 
						
							| 20 | 10 | adantrr |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( N ` A ) e. X ) | 
						
							| 21 | 18 19 20 | 3jca |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( B e. X /\ A e. X /\ ( N ` A ) e. X ) ) | 
						
							| 22 | 1 | grpoass |  |-  ( ( G e. GrpOp /\ ( B e. X /\ A e. X /\ ( N ` A ) e. X ) ) -> ( ( B G A ) G ( N ` A ) ) = ( B G ( A G ( N ` A ) ) ) ) | 
						
							| 23 | 21 22 | syldan |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( B G A ) G ( N ` A ) ) = ( B G ( A G ( N ` A ) ) ) ) | 
						
							| 24 | 23 | 3impb |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( B G A ) G ( N ` A ) ) = ( B G ( A G ( N ` A ) ) ) ) | 
						
							| 25 | 1 2 3 | grporinv |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = U ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( B G ( A G ( N ` A ) ) ) = ( B G U ) ) | 
						
							| 27 | 26 | 3adant3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B G ( A G ( N ` A ) ) ) = ( B G U ) ) | 
						
							| 28 | 1 2 | grporid |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( B G U ) = B ) | 
						
							| 29 | 28 | 3adant2 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B G U ) = B ) | 
						
							| 30 | 24 27 29 | 3eqtrd |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( B G A ) G ( N ` A ) ) = B ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( B G A ) = U ) -> ( ( B G A ) G ( N ` A ) ) = B ) | 
						
							| 32 | 15 17 31 | 3eqtr2d |  |-  ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( B G A ) = U ) -> ( N ` A ) = B ) | 
						
							| 33 | 9 32 | impbida |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) = B <-> ( B G A ) = U ) ) |