Step |
Hyp |
Ref |
Expression |
1 |
|
grpinv.1 |
|- X = ran G |
2 |
|
grpinv.2 |
|- U = ( GId ` G ) |
3 |
|
grpinv.3 |
|- N = ( inv ` G ) |
4 |
|
oveq1 |
|- ( ( N ` A ) = B -> ( ( N ` A ) G A ) = ( B G A ) ) |
5 |
4
|
adantl |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( ( N ` A ) G A ) = ( B G A ) ) |
6 |
1 2 3
|
grpolinv |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G A ) = U ) |
7 |
6
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) G A ) = U ) |
8 |
7
|
adantr |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( ( N ` A ) G A ) = U ) |
9 |
5 8
|
eqtr3d |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( B G A ) = U ) |
10 |
1 3
|
grpoinvcl |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) |
11 |
1 2
|
grpolid |
|- ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( U G ( N ` A ) ) = ( N ` A ) ) |
12 |
10 11
|
syldan |
|- ( ( G e. GrpOp /\ A e. X ) -> ( U G ( N ` A ) ) = ( N ` A ) ) |
13 |
12
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( U G ( N ` A ) ) = ( N ` A ) ) |
14 |
13
|
eqcomd |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` A ) = ( U G ( N ` A ) ) ) |
15 |
14
|
adantr |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( B G A ) = U ) -> ( N ` A ) = ( U G ( N ` A ) ) ) |
16 |
|
oveq1 |
|- ( ( B G A ) = U -> ( ( B G A ) G ( N ` A ) ) = ( U G ( N ` A ) ) ) |
17 |
16
|
adantl |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( B G A ) = U ) -> ( ( B G A ) G ( N ` A ) ) = ( U G ( N ` A ) ) ) |
18 |
|
simprr |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
19 |
|
simprl |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> A e. X ) |
20 |
10
|
adantrr |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( N ` A ) e. X ) |
21 |
18 19 20
|
3jca |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( B e. X /\ A e. X /\ ( N ` A ) e. X ) ) |
22 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( B e. X /\ A e. X /\ ( N ` A ) e. X ) ) -> ( ( B G A ) G ( N ` A ) ) = ( B G ( A G ( N ` A ) ) ) ) |
23 |
21 22
|
syldan |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( B G A ) G ( N ` A ) ) = ( B G ( A G ( N ` A ) ) ) ) |
24 |
23
|
3impb |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( B G A ) G ( N ` A ) ) = ( B G ( A G ( N ` A ) ) ) ) |
25 |
1 2 3
|
grporinv |
|- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = U ) |
26 |
25
|
oveq2d |
|- ( ( G e. GrpOp /\ A e. X ) -> ( B G ( A G ( N ` A ) ) ) = ( B G U ) ) |
27 |
26
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B G ( A G ( N ` A ) ) ) = ( B G U ) ) |
28 |
1 2
|
grporid |
|- ( ( G e. GrpOp /\ B e. X ) -> ( B G U ) = B ) |
29 |
28
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B G U ) = B ) |
30 |
24 27 29
|
3eqtrd |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( B G A ) G ( N ` A ) ) = B ) |
31 |
30
|
adantr |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( B G A ) = U ) -> ( ( B G A ) G ( N ` A ) ) = B ) |
32 |
15 17 31
|
3eqtr2d |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( B G A ) = U ) -> ( N ` A ) = B ) |
33 |
9 32
|
impbida |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) = B <-> ( B G A ) = U ) ) |