| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpasscan1.1 |  |-  X = ran G | 
						
							| 2 |  | grpasscan1.2 |  |-  N = ( inv ` G ) | 
						
							| 3 |  | simp1 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> G e. GrpOp ) | 
						
							| 4 |  | simp2 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> A e. X ) | 
						
							| 5 |  | simp3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> B e. X ) | 
						
							| 6 | 1 2 | grpoinvcl |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( N ` B ) e. X ) | 
						
							| 7 | 6 | 3adant2 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` B ) e. X ) | 
						
							| 8 | 1 2 | grpoinvcl |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) | 
						
							| 9 | 8 | 3adant3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` A ) e. X ) | 
						
							| 10 | 1 | grpocl |  |-  ( ( G e. GrpOp /\ ( N ` B ) e. X /\ ( N ` A ) e. X ) -> ( ( N ` B ) G ( N ` A ) ) e. X ) | 
						
							| 11 | 3 7 9 10 | syl3anc |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` B ) G ( N ` A ) ) e. X ) | 
						
							| 12 | 1 | grpoass |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ ( ( N ` B ) G ( N ` A ) ) e. X ) ) -> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( A G ( B G ( ( N ` B ) G ( N ` A ) ) ) ) ) | 
						
							| 13 | 3 4 5 11 12 | syl13anc |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( A G ( B G ( ( N ` B ) G ( N ` A ) ) ) ) ) | 
						
							| 14 |  | eqid |  |-  ( GId ` G ) = ( GId ` G ) | 
						
							| 15 | 1 14 2 | grporinv |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( B G ( N ` B ) ) = ( GId ` G ) ) | 
						
							| 16 | 15 | 3adant2 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B G ( N ` B ) ) = ( GId ` G ) ) | 
						
							| 17 | 16 | oveq1d |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( B G ( N ` B ) ) G ( N ` A ) ) = ( ( GId ` G ) G ( N ` A ) ) ) | 
						
							| 18 | 1 | grpoass |  |-  ( ( G e. GrpOp /\ ( B e. X /\ ( N ` B ) e. X /\ ( N ` A ) e. X ) ) -> ( ( B G ( N ` B ) ) G ( N ` A ) ) = ( B G ( ( N ` B ) G ( N ` A ) ) ) ) | 
						
							| 19 | 3 5 7 9 18 | syl13anc |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( B G ( N ` B ) ) G ( N ` A ) ) = ( B G ( ( N ` B ) G ( N ` A ) ) ) ) | 
						
							| 20 | 1 14 | grpolid |  |-  ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( ( GId ` G ) G ( N ` A ) ) = ( N ` A ) ) | 
						
							| 21 | 8 20 | syldan |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( GId ` G ) G ( N ` A ) ) = ( N ` A ) ) | 
						
							| 22 | 21 | 3adant3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( GId ` G ) G ( N ` A ) ) = ( N ` A ) ) | 
						
							| 23 | 17 19 22 | 3eqtr3d |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B G ( ( N ` B ) G ( N ` A ) ) ) = ( N ` A ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( B G ( ( N ` B ) G ( N ` A ) ) ) ) = ( A G ( N ` A ) ) ) | 
						
							| 25 | 1 14 2 | grporinv |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = ( GId ` G ) ) | 
						
							| 26 | 25 | 3adant3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( N ` A ) ) = ( GId ` G ) ) | 
						
							| 27 | 13 24 26 | 3eqtrd |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( GId ` G ) ) | 
						
							| 28 | 1 | grpocl |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) | 
						
							| 29 | 1 14 2 | grpoinvid1 |  |-  ( ( G e. GrpOp /\ ( A G B ) e. X /\ ( ( N ` B ) G ( N ` A ) ) e. X ) -> ( ( N ` ( A G B ) ) = ( ( N ` B ) G ( N ` A ) ) <-> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( GId ` G ) ) ) | 
						
							| 30 | 3 28 11 29 | syl3anc |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` ( A G B ) ) = ( ( N ` B ) G ( N ` A ) ) <-> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( GId ` G ) ) ) | 
						
							| 31 | 27 30 | mpbird |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A G B ) ) = ( ( N ` B ) G ( N ` A ) ) ) |