Step |
Hyp |
Ref |
Expression |
1 |
|
grpasscan1.1 |
|- X = ran G |
2 |
|
grpasscan1.2 |
|- N = ( inv ` G ) |
3 |
|
simp1 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> G e. GrpOp ) |
4 |
|
simp2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> A e. X ) |
5 |
|
simp3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> B e. X ) |
6 |
1 2
|
grpoinvcl |
|- ( ( G e. GrpOp /\ B e. X ) -> ( N ` B ) e. X ) |
7 |
6
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` B ) e. X ) |
8 |
1 2
|
grpoinvcl |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) |
9 |
8
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` A ) e. X ) |
10 |
1
|
grpocl |
|- ( ( G e. GrpOp /\ ( N ` B ) e. X /\ ( N ` A ) e. X ) -> ( ( N ` B ) G ( N ` A ) ) e. X ) |
11 |
3 7 9 10
|
syl3anc |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` B ) G ( N ` A ) ) e. X ) |
12 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ ( ( N ` B ) G ( N ` A ) ) e. X ) ) -> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( A G ( B G ( ( N ` B ) G ( N ` A ) ) ) ) ) |
13 |
3 4 5 11 12
|
syl13anc |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( A G ( B G ( ( N ` B ) G ( N ` A ) ) ) ) ) |
14 |
|
eqid |
|- ( GId ` G ) = ( GId ` G ) |
15 |
1 14 2
|
grporinv |
|- ( ( G e. GrpOp /\ B e. X ) -> ( B G ( N ` B ) ) = ( GId ` G ) ) |
16 |
15
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B G ( N ` B ) ) = ( GId ` G ) ) |
17 |
16
|
oveq1d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( B G ( N ` B ) ) G ( N ` A ) ) = ( ( GId ` G ) G ( N ` A ) ) ) |
18 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( B e. X /\ ( N ` B ) e. X /\ ( N ` A ) e. X ) ) -> ( ( B G ( N ` B ) ) G ( N ` A ) ) = ( B G ( ( N ` B ) G ( N ` A ) ) ) ) |
19 |
3 5 7 9 18
|
syl13anc |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( B G ( N ` B ) ) G ( N ` A ) ) = ( B G ( ( N ` B ) G ( N ` A ) ) ) ) |
20 |
1 14
|
grpolid |
|- ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( ( GId ` G ) G ( N ` A ) ) = ( N ` A ) ) |
21 |
8 20
|
syldan |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( GId ` G ) G ( N ` A ) ) = ( N ` A ) ) |
22 |
21
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( GId ` G ) G ( N ` A ) ) = ( N ` A ) ) |
23 |
17 19 22
|
3eqtr3d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( B G ( ( N ` B ) G ( N ` A ) ) ) = ( N ` A ) ) |
24 |
23
|
oveq2d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( B G ( ( N ` B ) G ( N ` A ) ) ) ) = ( A G ( N ` A ) ) ) |
25 |
1 14 2
|
grporinv |
|- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = ( GId ` G ) ) |
26 |
25
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( N ` A ) ) = ( GId ` G ) ) |
27 |
13 24 26
|
3eqtrd |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( GId ` G ) ) |
28 |
1
|
grpocl |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
29 |
1 14 2
|
grpoinvid1 |
|- ( ( G e. GrpOp /\ ( A G B ) e. X /\ ( ( N ` B ) G ( N ` A ) ) e. X ) -> ( ( N ` ( A G B ) ) = ( ( N ` B ) G ( N ` A ) ) <-> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( GId ` G ) ) ) |
30 |
3 28 11 29
|
syl3anc |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` ( A G B ) ) = ( ( N ` B ) G ( N ` A ) ) <-> ( ( A G B ) G ( ( N ` B ) G ( N ` A ) ) ) = ( GId ` G ) ) ) |
31 |
27 30
|
mpbird |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( N ` ( A G B ) ) = ( ( N ` B ) G ( N ` A ) ) ) |