Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvfval.1 |
|- X = ran G |
2 |
|
grpinvfval.2 |
|- U = ( GId ` G ) |
3 |
|
grpinvfval.3 |
|- N = ( inv ` G ) |
4 |
1 2 3
|
grpoinvfval |
|- ( G e. GrpOp -> N = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ) |
5 |
4
|
fveq1d |
|- ( G e. GrpOp -> ( N ` A ) = ( ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ` A ) ) |
6 |
|
oveq2 |
|- ( x = A -> ( y G x ) = ( y G A ) ) |
7 |
6
|
eqeq1d |
|- ( x = A -> ( ( y G x ) = U <-> ( y G A ) = U ) ) |
8 |
7
|
riotabidv |
|- ( x = A -> ( iota_ y e. X ( y G x ) = U ) = ( iota_ y e. X ( y G A ) = U ) ) |
9 |
|
eqid |
|- ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) |
10 |
|
riotaex |
|- ( iota_ y e. X ( y G A ) = U ) e. _V |
11 |
8 9 10
|
fvmpt |
|- ( A e. X -> ( ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ` A ) = ( iota_ y e. X ( y G A ) = U ) ) |
12 |
5 11
|
sylan9eq |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) = ( iota_ y e. X ( y G A ) = U ) ) |