| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpkerinj.1 |
|- X = ran G |
| 2 |
|
grpkerinj.2 |
|- W = ( GId ` G ) |
| 3 |
|
grpkerinj.3 |
|- Y = ran H |
| 4 |
|
grpkerinj.4 |
|- U = ( GId ` H ) |
| 5 |
2 4
|
ghomidOLD |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F ` W ) = U ) |
| 6 |
5
|
sneqd |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> { ( F ` W ) } = { U } ) |
| 7 |
1 3
|
ghomf |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> F : X --> Y ) |
| 8 |
7
|
ffnd |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> F Fn X ) |
| 9 |
1 2
|
grpoidcl |
|- ( G e. GrpOp -> W e. X ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> W e. X ) |
| 11 |
|
fnsnfv |
|- ( ( F Fn X /\ W e. X ) -> { ( F ` W ) } = ( F " { W } ) ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> { ( F ` W ) } = ( F " { W } ) ) |
| 13 |
6 12
|
eqtr3d |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> { U } = ( F " { W } ) ) |
| 14 |
13
|
imaeq2d |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( `' F " { U } ) = ( `' F " ( F " { W } ) ) ) |
| 15 |
14
|
adantl |
|- ( ( F : X -1-1-> Y /\ ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) ) -> ( `' F " { U } ) = ( `' F " ( F " { W } ) ) ) |
| 16 |
9
|
snssd |
|- ( G e. GrpOp -> { W } C_ X ) |
| 17 |
16
|
3ad2ant1 |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> { W } C_ X ) |
| 18 |
|
f1imacnv |
|- ( ( F : X -1-1-> Y /\ { W } C_ X ) -> ( `' F " ( F " { W } ) ) = { W } ) |
| 19 |
17 18
|
sylan2 |
|- ( ( F : X -1-1-> Y /\ ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) ) -> ( `' F " ( F " { W } ) ) = { W } ) |
| 20 |
15 19
|
eqtrd |
|- ( ( F : X -1-1-> Y /\ ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) ) -> ( `' F " { U } ) = { W } ) |
| 21 |
20
|
expcom |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F : X -1-1-> Y -> ( `' F " { U } ) = { W } ) ) |
| 22 |
7
|
adantr |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) -> F : X --> Y ) |
| 23 |
|
simpl2 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> H e. GrpOp ) |
| 24 |
7
|
ffvelcdmda |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ x e. X ) -> ( F ` x ) e. Y ) |
| 25 |
24
|
adantrr |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( F ` x ) e. Y ) |
| 26 |
7
|
ffvelcdmda |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ y e. X ) -> ( F ` y ) e. Y ) |
| 27 |
26
|
adantrl |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( F ` y ) e. Y ) |
| 28 |
|
eqid |
|- ( /g ` H ) = ( /g ` H ) |
| 29 |
3 4 28
|
grpoeqdivid |
|- ( ( H e. GrpOp /\ ( F ` x ) e. Y /\ ( F ` y ) e. Y ) -> ( ( F ` x ) = ( F ` y ) <-> ( ( F ` x ) ( /g ` H ) ( F ` y ) ) = U ) ) |
| 30 |
23 25 27 29
|
syl3anc |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` x ) = ( F ` y ) <-> ( ( F ` x ) ( /g ` H ) ( F ` y ) ) = U ) ) |
| 31 |
30
|
adantlr |
|- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` x ) = ( F ` y ) <-> ( ( F ` x ) ( /g ` H ) ( F ` y ) ) = U ) ) |
| 32 |
|
eqid |
|- ( /g ` G ) = ( /g ` G ) |
| 33 |
1 32 28
|
ghomdiv |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x ( /g ` G ) y ) ) = ( ( F ` x ) ( /g ` H ) ( F ` y ) ) ) |
| 34 |
33
|
adantlr |
|- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x ( /g ` G ) y ) ) = ( ( F ` x ) ( /g ` H ) ( F ` y ) ) ) |
| 35 |
34
|
eqeq1d |
|- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` ( x ( /g ` G ) y ) ) = U <-> ( ( F ` x ) ( /g ` H ) ( F ` y ) ) = U ) ) |
| 36 |
4
|
fvexi |
|- U e. _V |
| 37 |
36
|
snid |
|- U e. { U } |
| 38 |
|
eleq1 |
|- ( ( F ` ( x ( /g ` G ) y ) ) = U -> ( ( F ` ( x ( /g ` G ) y ) ) e. { U } <-> U e. { U } ) ) |
| 39 |
37 38
|
mpbiri |
|- ( ( F ` ( x ( /g ` G ) y ) ) = U -> ( F ` ( x ( /g ` G ) y ) ) e. { U } ) |
| 40 |
7
|
ffund |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> Fun F ) |
| 41 |
40
|
adantr |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> Fun F ) |
| 42 |
1 32
|
grpodivcl |
|- ( ( G e. GrpOp /\ x e. X /\ y e. X ) -> ( x ( /g ` G ) y ) e. X ) |
| 43 |
42
|
3expb |
|- ( ( G e. GrpOp /\ ( x e. X /\ y e. X ) ) -> ( x ( /g ` G ) y ) e. X ) |
| 44 |
43
|
3ad2antl1 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( x ( /g ` G ) y ) e. X ) |
| 45 |
7
|
fdmd |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> dom F = X ) |
| 46 |
45
|
adantr |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> dom F = X ) |
| 47 |
44 46
|
eleqtrrd |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( x ( /g ` G ) y ) e. dom F ) |
| 48 |
|
fvimacnv |
|- ( ( Fun F /\ ( x ( /g ` G ) y ) e. dom F ) -> ( ( F ` ( x ( /g ` G ) y ) ) e. { U } <-> ( x ( /g ` G ) y ) e. ( `' F " { U } ) ) ) |
| 49 |
41 47 48
|
syl2anc |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` ( x ( /g ` G ) y ) ) e. { U } <-> ( x ( /g ` G ) y ) e. ( `' F " { U } ) ) ) |
| 50 |
|
eleq2 |
|- ( ( `' F " { U } ) = { W } -> ( ( x ( /g ` G ) y ) e. ( `' F " { U } ) <-> ( x ( /g ` G ) y ) e. { W } ) ) |
| 51 |
49 50
|
sylan9bb |
|- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) /\ ( `' F " { U } ) = { W } ) -> ( ( F ` ( x ( /g ` G ) y ) ) e. { U } <-> ( x ( /g ` G ) y ) e. { W } ) ) |
| 52 |
51
|
an32s |
|- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` ( x ( /g ` G ) y ) ) e. { U } <-> ( x ( /g ` G ) y ) e. { W } ) ) |
| 53 |
|
elsni |
|- ( ( x ( /g ` G ) y ) e. { W } -> ( x ( /g ` G ) y ) = W ) |
| 54 |
1 2 32
|
grpoeqdivid |
|- ( ( G e. GrpOp /\ x e. X /\ y e. X ) -> ( x = y <-> ( x ( /g ` G ) y ) = W ) ) |
| 55 |
54
|
biimprd |
|- ( ( G e. GrpOp /\ x e. X /\ y e. X ) -> ( ( x ( /g ` G ) y ) = W -> x = y ) ) |
| 56 |
55
|
3expb |
|- ( ( G e. GrpOp /\ ( x e. X /\ y e. X ) ) -> ( ( x ( /g ` G ) y ) = W -> x = y ) ) |
| 57 |
56
|
3ad2antl1 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( x ( /g ` G ) y ) = W -> x = y ) ) |
| 58 |
53 57
|
syl5 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( x ( /g ` G ) y ) e. { W } -> x = y ) ) |
| 59 |
58
|
adantlr |
|- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( x ( /g ` G ) y ) e. { W } -> x = y ) ) |
| 60 |
52 59
|
sylbid |
|- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` ( x ( /g ` G ) y ) ) e. { U } -> x = y ) ) |
| 61 |
39 60
|
syl5 |
|- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` ( x ( /g ` G ) y ) ) = U -> x = y ) ) |
| 62 |
35 61
|
sylbird |
|- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( ( F ` x ) ( /g ` H ) ( F ` y ) ) = U -> x = y ) ) |
| 63 |
31 62
|
sylbid |
|- ( ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 64 |
63
|
ralrimivva |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) -> A. x e. X A. y e. X ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 65 |
|
dff13 |
|- ( F : X -1-1-> Y <-> ( F : X --> Y /\ A. x e. X A. y e. X ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 66 |
22 64 65
|
sylanbrc |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( `' F " { U } ) = { W } ) -> F : X -1-1-> Y ) |
| 67 |
66
|
ex |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( ( `' F " { U } ) = { W } -> F : X -1-1-> Y ) ) |
| 68 |
21 67
|
impbid |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F : X -1-1-> Y <-> ( `' F " { U } ) = { W } ) ) |