| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grplcan.1 |  |-  X = ran G | 
						
							| 2 |  | oveq2 |  |-  ( ( C G A ) = ( C G B ) -> ( ( ( inv ` G ) ` C ) G ( C G A ) ) = ( ( ( inv ` G ) ` C ) G ( C G B ) ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( C G A ) = ( C G B ) ) -> ( ( ( inv ` G ) ` C ) G ( C G A ) ) = ( ( ( inv ` G ) ` C ) G ( C G B ) ) ) | 
						
							| 4 |  | eqid |  |-  ( GId ` G ) = ( GId ` G ) | 
						
							| 5 |  | eqid |  |-  ( inv ` G ) = ( inv ` G ) | 
						
							| 6 | 1 4 5 | grpolinv |  |-  ( ( G e. GrpOp /\ C e. X ) -> ( ( ( inv ` G ) ` C ) G C ) = ( GId ` G ) ) | 
						
							| 7 | 6 | adantlr |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) -> ( ( ( inv ` G ) ` C ) G C ) = ( GId ` G ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) -> ( ( ( ( inv ` G ) ` C ) G C ) G A ) = ( ( GId ` G ) G A ) ) | 
						
							| 9 | 1 5 | grpoinvcl |  |-  ( ( G e. GrpOp /\ C e. X ) -> ( ( inv ` G ) ` C ) e. X ) | 
						
							| 10 | 9 | adantrl |  |-  ( ( G e. GrpOp /\ ( A e. X /\ C e. X ) ) -> ( ( inv ` G ) ` C ) e. X ) | 
						
							| 11 |  | simprr |  |-  ( ( G e. GrpOp /\ ( A e. X /\ C e. X ) ) -> C e. X ) | 
						
							| 12 |  | simprl |  |-  ( ( G e. GrpOp /\ ( A e. X /\ C e. X ) ) -> A e. X ) | 
						
							| 13 | 10 11 12 | 3jca |  |-  ( ( G e. GrpOp /\ ( A e. X /\ C e. X ) ) -> ( ( ( inv ` G ) ` C ) e. X /\ C e. X /\ A e. X ) ) | 
						
							| 14 | 1 | grpoass |  |-  ( ( G e. GrpOp /\ ( ( ( inv ` G ) ` C ) e. X /\ C e. X /\ A e. X ) ) -> ( ( ( ( inv ` G ) ` C ) G C ) G A ) = ( ( ( inv ` G ) ` C ) G ( C G A ) ) ) | 
						
							| 15 | 13 14 | syldan |  |-  ( ( G e. GrpOp /\ ( A e. X /\ C e. X ) ) -> ( ( ( ( inv ` G ) ` C ) G C ) G A ) = ( ( ( inv ` G ) ` C ) G ( C G A ) ) ) | 
						
							| 16 | 15 | anassrs |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) -> ( ( ( ( inv ` G ) ` C ) G C ) G A ) = ( ( ( inv ` G ) ` C ) G ( C G A ) ) ) | 
						
							| 17 | 1 4 | grpolid |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( GId ` G ) G A ) = A ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) -> ( ( GId ` G ) G A ) = A ) | 
						
							| 19 | 8 16 18 | 3eqtr3d |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) -> ( ( ( inv ` G ) ` C ) G ( C G A ) ) = A ) | 
						
							| 20 | 19 | adantrl |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( ( ( inv ` G ) ` C ) G ( C G A ) ) = A ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( C G A ) = ( C G B ) ) -> ( ( ( inv ` G ) ` C ) G ( C G A ) ) = A ) | 
						
							| 22 | 6 | adantrl |  |-  ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( ( inv ` G ) ` C ) G C ) = ( GId ` G ) ) | 
						
							| 23 | 22 | oveq1d |  |-  ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( ( ( inv ` G ) ` C ) G C ) G B ) = ( ( GId ` G ) G B ) ) | 
						
							| 24 | 9 | adantrl |  |-  ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` C ) e. X ) | 
						
							| 25 |  | simprr |  |-  ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> C e. X ) | 
						
							| 26 |  | simprl |  |-  ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> B e. X ) | 
						
							| 27 | 24 25 26 | 3jca |  |-  ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( ( inv ` G ) ` C ) e. X /\ C e. X /\ B e. X ) ) | 
						
							| 28 | 1 | grpoass |  |-  ( ( G e. GrpOp /\ ( ( ( inv ` G ) ` C ) e. X /\ C e. X /\ B e. X ) ) -> ( ( ( ( inv ` G ) ` C ) G C ) G B ) = ( ( ( inv ` G ) ` C ) G ( C G B ) ) ) | 
						
							| 29 | 27 28 | syldan |  |-  ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( ( ( inv ` G ) ` C ) G C ) G B ) = ( ( ( inv ` G ) ` C ) G ( C G B ) ) ) | 
						
							| 30 | 1 4 | grpolid |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( ( GId ` G ) G B ) = B ) | 
						
							| 31 | 30 | adantrr |  |-  ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( GId ` G ) G B ) = B ) | 
						
							| 32 | 23 29 31 | 3eqtr3d |  |-  ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( ( ( inv ` G ) ` C ) G ( C G B ) ) = B ) | 
						
							| 33 | 32 | adantlr |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( ( ( inv ` G ) ` C ) G ( C G B ) ) = B ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( C G A ) = ( C G B ) ) -> ( ( ( inv ` G ) ` C ) G ( C G B ) ) = B ) | 
						
							| 35 | 3 21 34 | 3eqtr3d |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( C G A ) = ( C G B ) ) -> A = B ) | 
						
							| 36 | 35 | exp53 |  |-  ( G e. GrpOp -> ( A e. X -> ( B e. X -> ( C e. X -> ( ( C G A ) = ( C G B ) -> A = B ) ) ) ) ) | 
						
							| 37 | 36 | 3imp2 |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( C G A ) = ( C G B ) -> A = B ) ) | 
						
							| 38 |  | oveq2 |  |-  ( A = B -> ( C G A ) = ( C G B ) ) | 
						
							| 39 | 37 38 | impbid1 |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( C G A ) = ( C G B ) <-> A = B ) ) |