Description: A group has a left identity element, and every member has a left inverse. (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | grpfo.1 | |- X = ran G |
|
Assertion | grpolidinv | |- ( G e. GrpOp -> E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpfo.1 | |- X = ran G |
|
2 | 1 | isgrpo | |- ( G e. GrpOp -> ( G e. GrpOp <-> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) ) ) |
3 | 2 | ibi | |- ( G e. GrpOp -> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) ) |
4 | 3 | simp3d | |- ( G e. GrpOp -> E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) |