Metamath Proof Explorer


Theorem grpolinv

Description: The left inverse of a group element. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypotheses grpinv.1
|- X = ran G
grpinv.2
|- U = ( GId ` G )
grpinv.3
|- N = ( inv ` G )
Assertion grpolinv
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G A ) = U )

Proof

Step Hyp Ref Expression
1 grpinv.1
 |-  X = ran G
2 grpinv.2
 |-  U = ( GId ` G )
3 grpinv.3
 |-  N = ( inv ` G )
4 1 2 3 grpoinv
 |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) )
5 4 simpld
 |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G A ) = U )