| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdivf.1 |  |-  X = ran G | 
						
							| 2 |  | grpdivf.3 |  |-  D = ( /g ` G ) | 
						
							| 3 |  | simpr1 |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) | 
						
							| 4 |  | simpr2 |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) | 
						
							| 5 |  | eqid |  |-  ( inv ` G ) = ( inv ` G ) | 
						
							| 6 | 1 5 | grpoinvcl |  |-  ( ( G e. GrpOp /\ C e. X ) -> ( ( inv ` G ) ` C ) e. X ) | 
						
							| 7 | 6 | 3ad2antr3 |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` C ) e. X ) | 
						
							| 8 | 3 4 7 | 3jca |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) | 
						
							| 9 | 1 | grpoass |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) -> ( ( A G B ) G ( ( inv ` G ) ` C ) ) = ( A G ( B G ( ( inv ` G ) ` C ) ) ) ) | 
						
							| 10 | 8 9 | syldan |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G ( ( inv ` G ) ` C ) ) = ( A G ( B G ( ( inv ` G ) ` C ) ) ) ) | 
						
							| 11 |  | simpl |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. GrpOp ) | 
						
							| 12 | 1 | grpocl |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) | 
						
							| 13 | 12 | 3adant3r3 |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G B ) e. X ) | 
						
							| 14 |  | simpr3 |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) | 
						
							| 15 | 1 5 2 | grpodivval |  |-  ( ( G e. GrpOp /\ ( A G B ) e. X /\ C e. X ) -> ( ( A G B ) D C ) = ( ( A G B ) G ( ( inv ` G ) ` C ) ) ) | 
						
							| 16 | 11 13 14 15 | syl3anc |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( ( A G B ) G ( ( inv ` G ) ` C ) ) ) | 
						
							| 17 | 1 5 2 | grpodivval |  |-  ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( B D C ) = ( B G ( ( inv ` G ) ` C ) ) ) | 
						
							| 18 | 17 | 3adant3r1 |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) = ( B G ( ( inv ` G ) ` C ) ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G ( B D C ) ) = ( A G ( B G ( ( inv ` G ) ` C ) ) ) ) | 
						
							| 20 | 10 16 19 | 3eqtr4d |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( A G ( B D C ) ) ) |