Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | grpfo.1 | |- X = ran G |
|
Assertion | grpon0 | |- ( G e. GrpOp -> X =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpfo.1 | |- X = ran G |
|
2 | 1 | grpolidinv | |- ( G e. GrpOp -> E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) |
3 | rexn0 | |- ( E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) -> X =/= (/) ) |
|
4 | 2 3 | syl | |- ( G e. GrpOp -> X =/= (/) ) |