Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | |- X = ran G | |
| Assertion | grpon0 | |- ( G e. GrpOp -> X =/= (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpfo.1 | |- X = ran G | |
| 2 | 1 | grpolidinv | |- ( G e. GrpOp -> E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) | 
| 3 | rexn0 | |- ( E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) -> X =/= (/) ) | |
| 4 | 2 3 | syl | |- ( G e. GrpOp -> X =/= (/) ) |