| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdivf.1 |  |-  X = ran G | 
						
							| 2 |  | grpdivf.3 |  |-  D = ( /g ` G ) | 
						
							| 3 |  | eqid |  |-  ( inv ` G ) = ( inv ` G ) | 
						
							| 4 | 1 3 2 | grpodivval |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) = ( A G ( ( inv ` G ) ` B ) ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) G B ) = ( ( A G ( ( inv ` G ) ` B ) ) G B ) ) | 
						
							| 6 |  | simp1 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> G e. GrpOp ) | 
						
							| 7 |  | simp2 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> A e. X ) | 
						
							| 8 | 1 3 | grpoinvcl |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( ( inv ` G ) ` B ) e. X ) | 
						
							| 9 | 8 | 3adant2 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( inv ` G ) ` B ) e. X ) | 
						
							| 10 |  | simp3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> B e. X ) | 
						
							| 11 | 1 | grpoass |  |-  ( ( G e. GrpOp /\ ( A e. X /\ ( ( inv ` G ) ` B ) e. X /\ B e. X ) ) -> ( ( A G ( ( inv ` G ) ` B ) ) G B ) = ( A G ( ( ( inv ` G ) ` B ) G B ) ) ) | 
						
							| 12 | 6 7 9 10 11 | syl13anc |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A G ( ( inv ` G ) ` B ) ) G B ) = ( A G ( ( ( inv ` G ) ` B ) G B ) ) ) | 
						
							| 13 |  | eqid |  |-  ( GId ` G ) = ( GId ` G ) | 
						
							| 14 | 1 13 3 | grpolinv |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( ( ( inv ` G ) ` B ) G B ) = ( GId ` G ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( A G ( ( ( inv ` G ) ` B ) G B ) ) = ( A G ( GId ` G ) ) ) | 
						
							| 16 | 15 | 3adant2 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( ( ( inv ` G ) ` B ) G B ) ) = ( A G ( GId ` G ) ) ) | 
						
							| 17 | 1 13 | grporid |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( A G ( GId ` G ) ) = A ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( GId ` G ) ) = A ) | 
						
							| 19 | 16 18 | eqtrd |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( ( ( inv ` G ) ` B ) G B ) ) = A ) | 
						
							| 20 | 12 19 | eqtrd |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A G ( ( inv ` G ) ` B ) ) G B ) = A ) | 
						
							| 21 | 5 20 | eqtrd |  |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) G B ) = A ) |