Step |
Hyp |
Ref |
Expression |
1 |
|
grprcan.1 |
|- X = ran G |
2 |
|
eqid |
|- ( GId ` G ) = ( GId ` G ) |
3 |
1 2
|
grpoidinv2 |
|- ( ( G e. GrpOp /\ C e. X ) -> ( ( ( ( GId ` G ) G C ) = C /\ ( C G ( GId ` G ) ) = C ) /\ E. y e. X ( ( y G C ) = ( GId ` G ) /\ ( C G y ) = ( GId ` G ) ) ) ) |
4 |
|
simpr |
|- ( ( ( y G C ) = ( GId ` G ) /\ ( C G y ) = ( GId ` G ) ) -> ( C G y ) = ( GId ` G ) ) |
5 |
4
|
reximi |
|- ( E. y e. X ( ( y G C ) = ( GId ` G ) /\ ( C G y ) = ( GId ` G ) ) -> E. y e. X ( C G y ) = ( GId ` G ) ) |
6 |
5
|
adantl |
|- ( ( ( ( ( GId ` G ) G C ) = C /\ ( C G ( GId ` G ) ) = C ) /\ E. y e. X ( ( y G C ) = ( GId ` G ) /\ ( C G y ) = ( GId ` G ) ) ) -> E. y e. X ( C G y ) = ( GId ` G ) ) |
7 |
3 6
|
syl |
|- ( ( G e. GrpOp /\ C e. X ) -> E. y e. X ( C G y ) = ( GId ` G ) ) |
8 |
7
|
ad2ant2rl |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> E. y e. X ( C G y ) = ( GId ` G ) ) |
9 |
|
oveq1 |
|- ( ( A G C ) = ( B G C ) -> ( ( A G C ) G y ) = ( ( B G C ) G y ) ) |
10 |
9
|
ad2antll |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( A G C ) = ( B G C ) ) ) -> ( ( A G C ) G y ) = ( ( B G C ) G y ) ) |
11 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( A e. X /\ C e. X /\ y e. X ) ) -> ( ( A G C ) G y ) = ( A G ( C G y ) ) ) |
12 |
11
|
3anassrs |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) /\ y e. X ) -> ( ( A G C ) G y ) = ( A G ( C G y ) ) ) |
13 |
12
|
adantlrl |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ y e. X ) -> ( ( A G C ) G y ) = ( A G ( C G y ) ) ) |
14 |
13
|
adantrr |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( A G C ) = ( B G C ) ) ) -> ( ( A G C ) G y ) = ( A G ( C G y ) ) ) |
15 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( B e. X /\ C e. X /\ y e. X ) ) -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) |
16 |
15
|
3exp2 |
|- ( G e. GrpOp -> ( B e. X -> ( C e. X -> ( y e. X -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) ) ) ) |
17 |
16
|
imp42 |
|- ( ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) /\ y e. X ) -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) |
18 |
17
|
adantllr |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ y e. X ) -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) |
19 |
18
|
adantrr |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( A G C ) = ( B G C ) ) ) -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) |
20 |
10 14 19
|
3eqtr3d |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( A G C ) = ( B G C ) ) ) -> ( A G ( C G y ) ) = ( B G ( C G y ) ) ) |
21 |
20
|
adantrrl |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( A G ( C G y ) ) = ( B G ( C G y ) ) ) |
22 |
|
oveq2 |
|- ( ( C G y ) = ( GId ` G ) -> ( A G ( C G y ) ) = ( A G ( GId ` G ) ) ) |
23 |
22
|
ad2antrl |
|- ( ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) -> ( A G ( C G y ) ) = ( A G ( GId ` G ) ) ) |
24 |
23
|
adantl |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( A G ( C G y ) ) = ( A G ( GId ` G ) ) ) |
25 |
|
oveq2 |
|- ( ( C G y ) = ( GId ` G ) -> ( B G ( C G y ) ) = ( B G ( GId ` G ) ) ) |
26 |
25
|
ad2antrl |
|- ( ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) -> ( B G ( C G y ) ) = ( B G ( GId ` G ) ) ) |
27 |
26
|
adantl |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( B G ( C G y ) ) = ( B G ( GId ` G ) ) ) |
28 |
21 24 27
|
3eqtr3d |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( A G ( GId ` G ) ) = ( B G ( GId ` G ) ) ) |
29 |
1 2
|
grporid |
|- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( GId ` G ) ) = A ) |
30 |
29
|
ad2antrr |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( A G ( GId ` G ) ) = A ) |
31 |
1 2
|
grporid |
|- ( ( G e. GrpOp /\ B e. X ) -> ( B G ( GId ` G ) ) = B ) |
32 |
31
|
ad2ant2r |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( B G ( GId ` G ) ) = B ) |
33 |
32
|
adantr |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( B G ( GId ` G ) ) = B ) |
34 |
28 30 33
|
3eqtr3d |
|- ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> A = B ) |
35 |
34
|
exp45 |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( y e. X -> ( ( C G y ) = ( GId ` G ) -> ( ( A G C ) = ( B G C ) -> A = B ) ) ) ) |
36 |
35
|
rexlimdv |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( E. y e. X ( C G y ) = ( GId ` G ) -> ( ( A G C ) = ( B G C ) -> A = B ) ) ) |
37 |
8 36
|
mpd |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( ( A G C ) = ( B G C ) -> A = B ) ) |
38 |
|
oveq1 |
|- ( A = B -> ( A G C ) = ( B G C ) ) |
39 |
37 38
|
impbid1 |
|- ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( ( A G C ) = ( B G C ) <-> A = B ) ) |
40 |
39
|
exp43 |
|- ( G e. GrpOp -> ( A e. X -> ( B e. X -> ( C e. X -> ( ( A G C ) = ( B G C ) <-> A = B ) ) ) ) ) |
41 |
40
|
3imp2 |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G C ) = ( B G C ) <-> A = B ) ) |