| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grprcan.1 |  |-  X = ran G | 
						
							| 2 |  | eqid |  |-  ( GId ` G ) = ( GId ` G ) | 
						
							| 3 | 1 2 | grpoidinv2 |  |-  ( ( G e. GrpOp /\ C e. X ) -> ( ( ( ( GId ` G ) G C ) = C /\ ( C G ( GId ` G ) ) = C ) /\ E. y e. X ( ( y G C ) = ( GId ` G ) /\ ( C G y ) = ( GId ` G ) ) ) ) | 
						
							| 4 |  | simpr |  |-  ( ( ( y G C ) = ( GId ` G ) /\ ( C G y ) = ( GId ` G ) ) -> ( C G y ) = ( GId ` G ) ) | 
						
							| 5 | 4 | reximi |  |-  ( E. y e. X ( ( y G C ) = ( GId ` G ) /\ ( C G y ) = ( GId ` G ) ) -> E. y e. X ( C G y ) = ( GId ` G ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( ( ( GId ` G ) G C ) = C /\ ( C G ( GId ` G ) ) = C ) /\ E. y e. X ( ( y G C ) = ( GId ` G ) /\ ( C G y ) = ( GId ` G ) ) ) -> E. y e. X ( C G y ) = ( GId ` G ) ) | 
						
							| 7 | 3 6 | syl |  |-  ( ( G e. GrpOp /\ C e. X ) -> E. y e. X ( C G y ) = ( GId ` G ) ) | 
						
							| 8 | 7 | ad2ant2rl |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> E. y e. X ( C G y ) = ( GId ` G ) ) | 
						
							| 9 |  | oveq1 |  |-  ( ( A G C ) = ( B G C ) -> ( ( A G C ) G y ) = ( ( B G C ) G y ) ) | 
						
							| 10 | 9 | ad2antll |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( A G C ) = ( B G C ) ) ) -> ( ( A G C ) G y ) = ( ( B G C ) G y ) ) | 
						
							| 11 | 1 | grpoass |  |-  ( ( G e. GrpOp /\ ( A e. X /\ C e. X /\ y e. X ) ) -> ( ( A G C ) G y ) = ( A G ( C G y ) ) ) | 
						
							| 12 | 11 | 3anassrs |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ C e. X ) /\ y e. X ) -> ( ( A G C ) G y ) = ( A G ( C G y ) ) ) | 
						
							| 13 | 12 | adantlrl |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ y e. X ) -> ( ( A G C ) G y ) = ( A G ( C G y ) ) ) | 
						
							| 14 | 13 | adantrr |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( A G C ) = ( B G C ) ) ) -> ( ( A G C ) G y ) = ( A G ( C G y ) ) ) | 
						
							| 15 | 1 | grpoass |  |-  ( ( G e. GrpOp /\ ( B e. X /\ C e. X /\ y e. X ) ) -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) | 
						
							| 16 | 15 | 3exp2 |  |-  ( G e. GrpOp -> ( B e. X -> ( C e. X -> ( y e. X -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) ) ) ) | 
						
							| 17 | 16 | imp42 |  |-  ( ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) /\ y e. X ) -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) | 
						
							| 18 | 17 | adantllr |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ y e. X ) -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) | 
						
							| 19 | 18 | adantrr |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( A G C ) = ( B G C ) ) ) -> ( ( B G C ) G y ) = ( B G ( C G y ) ) ) | 
						
							| 20 | 10 14 19 | 3eqtr3d |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( A G C ) = ( B G C ) ) ) -> ( A G ( C G y ) ) = ( B G ( C G y ) ) ) | 
						
							| 21 | 20 | adantrrl |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( A G ( C G y ) ) = ( B G ( C G y ) ) ) | 
						
							| 22 |  | oveq2 |  |-  ( ( C G y ) = ( GId ` G ) -> ( A G ( C G y ) ) = ( A G ( GId ` G ) ) ) | 
						
							| 23 | 22 | ad2antrl |  |-  ( ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) -> ( A G ( C G y ) ) = ( A G ( GId ` G ) ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( A G ( C G y ) ) = ( A G ( GId ` G ) ) ) | 
						
							| 25 |  | oveq2 |  |-  ( ( C G y ) = ( GId ` G ) -> ( B G ( C G y ) ) = ( B G ( GId ` G ) ) ) | 
						
							| 26 | 25 | ad2antrl |  |-  ( ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) -> ( B G ( C G y ) ) = ( B G ( GId ` G ) ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( B G ( C G y ) ) = ( B G ( GId ` G ) ) ) | 
						
							| 28 | 21 24 27 | 3eqtr3d |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( A G ( GId ` G ) ) = ( B G ( GId ` G ) ) ) | 
						
							| 29 | 1 2 | grporid |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( A G ( GId ` G ) ) = A ) | 
						
							| 30 | 29 | ad2antrr |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( A G ( GId ` G ) ) = A ) | 
						
							| 31 | 1 2 | grporid |  |-  ( ( G e. GrpOp /\ B e. X ) -> ( B G ( GId ` G ) ) = B ) | 
						
							| 32 | 31 | ad2ant2r |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( B G ( GId ` G ) ) = B ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> ( B G ( GId ` G ) ) = B ) | 
						
							| 34 | 28 30 33 | 3eqtr3d |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) /\ ( y e. X /\ ( ( C G y ) = ( GId ` G ) /\ ( A G C ) = ( B G C ) ) ) ) -> A = B ) | 
						
							| 35 | 34 | exp45 |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( y e. X -> ( ( C G y ) = ( GId ` G ) -> ( ( A G C ) = ( B G C ) -> A = B ) ) ) ) | 
						
							| 36 | 35 | rexlimdv |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( E. y e. X ( C G y ) = ( GId ` G ) -> ( ( A G C ) = ( B G C ) -> A = B ) ) ) | 
						
							| 37 | 8 36 | mpd |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( ( A G C ) = ( B G C ) -> A = B ) ) | 
						
							| 38 |  | oveq1 |  |-  ( A = B -> ( A G C ) = ( B G C ) ) | 
						
							| 39 | 37 38 | impbid1 |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( ( A G C ) = ( B G C ) <-> A = B ) ) | 
						
							| 40 | 39 | exp43 |  |-  ( G e. GrpOp -> ( A e. X -> ( B e. X -> ( C e. X -> ( ( A G C ) = ( B G C ) <-> A = B ) ) ) ) ) | 
						
							| 41 | 40 | 3imp2 |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G C ) = ( B G C ) <-> A = B ) ) |