Description: The identity element of a group is a right identity. (Contributed by NM, 24-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpoidval.1 | |- X = ran G | |
| grpoidval.2 | |- U = ( GId ` G ) | ||
| Assertion | grporid | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G U ) = A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpoidval.1 | |- X = ran G | |
| 2 | grpoidval.2 | |- U = ( GId ` G ) | |
| 3 | 1 2 | grpoidinv2 | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. x e. X ( ( x G A ) = U /\ ( A G x ) = U ) ) ) | 
| 4 | simplr | |- ( ( ( ( U G A ) = A /\ ( A G U ) = A ) /\ E. x e. X ( ( x G A ) = U /\ ( A G x ) = U ) ) -> ( A G U ) = A ) | |
| 5 | 3 4 | syl | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G U ) = A ) |