Description: The right inverse of a group element. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpinv.1 | |- X = ran G |
|
grpinv.2 | |- U = ( GId ` G ) |
||
grpinv.3 | |- N = ( inv ` G ) |
||
Assertion | grporinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinv.1 | |- X = ran G |
|
2 | grpinv.2 | |- U = ( GId ` G ) |
|
3 | grpinv.3 | |- N = ( inv ` G ) |
|
4 | 1 2 3 | grpoinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) |
5 | 4 | simprd | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = U ) |