Description: The right inverse of a group element. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.1 | |- X = ran G | |
| grpinv.2 | |- U = ( GId ` G ) | ||
| grpinv.3 | |- N = ( inv ` G ) | ||
| Assertion | grporinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = U ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpinv.1 | |- X = ran G | |
| 2 | grpinv.2 | |- U = ( GId ` G ) | |
| 3 | grpinv.3 | |- N = ( inv ` G ) | |
| 4 | 1 2 3 | grpoinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G A ) = U /\ ( A G ( N ` A ) ) = U ) ) | 
| 5 | 4 | simprd | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = U ) |