| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ran G = ran G |
| 2 |
1
|
grpofo |
|- ( G e. GrpOp -> G : ( ran G X. ran G ) -onto-> ran G ) |
| 3 |
|
fof |
|- ( G : ( ran G X. ran G ) -onto-> ran G -> G : ( ran G X. ran G ) --> ran G ) |
| 4 |
3
|
fdmd |
|- ( G : ( ran G X. ran G ) -onto-> ran G -> dom G = ( ran G X. ran G ) ) |
| 5 |
4
|
dmeqd |
|- ( G : ( ran G X. ran G ) -onto-> ran G -> dom dom G = dom ( ran G X. ran G ) ) |
| 6 |
|
dmxpid |
|- dom ( ran G X. ran G ) = ran G |
| 7 |
5 6
|
eqtr2di |
|- ( G : ( ran G X. ran G ) -onto-> ran G -> ran G = dom dom G ) |
| 8 |
2 7
|
syl |
|- ( G e. GrpOp -> ran G = dom dom G ) |