Metamath Proof Explorer


Theorem grpplusf

Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses grpplusf.1
|- B = ( Base ` G )
grpplusf.2
|- F = ( +f ` G )
Assertion grpplusf
|- ( G e. Grp -> F : ( B X. B ) --> B )

Proof

Step Hyp Ref Expression
1 grpplusf.1
 |-  B = ( Base ` G )
2 grpplusf.2
 |-  F = ( +f ` G )
3 grpmnd
 |-  ( G e. Grp -> G e. Mnd )
4 1 2 mndplusf
 |-  ( G e. Mnd -> F : ( B X. B ) --> B )
5 3 4 syl
 |-  ( G e. Grp -> F : ( B X. B ) --> B )