Description: The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006) (Revised by AV, 30-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpplusf.1 | |- B = ( Base ` G ) |
|
grpplusf.2 | |- F = ( +f ` G ) |
||
Assertion | grpplusfo | |- ( G e. Grp -> F : ( B X. B ) -onto-> B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpplusf.1 | |- B = ( Base ` G ) |
|
2 | grpplusf.2 | |- F = ( +f ` G ) |
|
3 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
4 | 1 2 | mndpfo | |- ( G e. Mnd -> F : ( B X. B ) -onto-> B ) |
5 | 3 4 | syl | |- ( G e. Grp -> F : ( B X. B ) -onto-> B ) |