Metamath Proof Explorer


Theorem grpplusfo

Description: The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006) (Revised by AV, 30-Aug-2021)

Ref Expression
Hypotheses grpplusf.1
|- B = ( Base ` G )
grpplusf.2
|- F = ( +f ` G )
Assertion grpplusfo
|- ( G e. Grp -> F : ( B X. B ) -onto-> B )

Proof

Step Hyp Ref Expression
1 grpplusf.1
 |-  B = ( Base ` G )
2 grpplusf.2
 |-  F = ( +f ` G )
3 grpmnd
 |-  ( G e. Grp -> G e. Mnd )
4 1 2 mndpfo
 |-  ( G e. Mnd -> F : ( B X. B ) -onto-> B )
5 3 4 syl
 |-  ( G e. Grp -> F : ( B X. B ) -onto-> B )