Description: The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013) (Revised by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | grpfn.g | |- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
|
Assertion | grpplusg | |- ( .+ e. V -> .+ = ( +g ` G ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpfn.g | |- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
|
2 | df-plusg | |- +g = Slot 2 |
|
3 | 1lt2 | |- 1 < 2 |
|
4 | 2nn | |- 2 e. NN |
|
5 | 1 2 3 4 | 2strop | |- ( .+ e. V -> .+ = ( +g ` G ) ) |