Description: The operation of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpplusg instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpstrx.b | |- B e. _V |
|
grpstrx.p | |- .+ e. _V |
||
grpstrx.g | |- G = { <. 1 , B >. , <. 2 , .+ >. } |
||
Assertion | grpplusgx | |- .+ = ( +g ` G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpstrx.b | |- B e. _V |
|
2 | grpstrx.p | |- .+ e. _V |
|
3 | grpstrx.g | |- G = { <. 1 , B >. , <. 2 , .+ >. } |
|
4 | basendx | |- ( Base ` ndx ) = 1 |
|
5 | 4 | opeq1i | |- <. ( Base ` ndx ) , B >. = <. 1 , B >. |
6 | plusgndx | |- ( +g ` ndx ) = 2 |
|
7 | 6 | opeq1i | |- <. ( +g ` ndx ) , .+ >. = <. 2 , .+ >. |
8 | 5 7 | preq12i | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } = { <. 1 , B >. , <. 2 , .+ >. } |
9 | 3 8 | eqtr4i | |- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
10 | 9 | grpplusg | |- ( .+ e. _V -> .+ = ( +g ` G ) ) |
11 | 2 10 | ax-mp | |- .+ = ( +g ` G ) |