Description: Generalize a specific 2-element group L to show that any set K with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grppropstr.b | |- ( Base ` K ) = B | |
| grppropstr.p | |- ( +g ` K ) = .+ | ||
| grppropstr.l | |- L = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } | ||
| Assertion | grppropstr | |- ( K e. Grp <-> L e. Grp ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grppropstr.b | |- ( Base ` K ) = B | |
| 2 | grppropstr.p | |- ( +g ` K ) = .+ | |
| 3 | grppropstr.l |  |-  L = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } | |
| 4 | fvex | |- ( Base ` K ) e. _V | |
| 5 | 1 4 | eqeltrri | |- B e. _V | 
| 6 | 3 | grpbase | |- ( B e. _V -> B = ( Base ` L ) ) | 
| 7 | 5 6 | ax-mp | |- B = ( Base ` L ) | 
| 8 | 1 7 | eqtri | |- ( Base ` K ) = ( Base ` L ) | 
| 9 | fvex | |- ( +g ` K ) e. _V | |
| 10 | 2 9 | eqeltrri | |- .+ e. _V | 
| 11 | 3 | grpplusg | |- ( .+ e. _V -> .+ = ( +g ` L ) ) | 
| 12 | 10 11 | ax-mp | |- .+ = ( +g ` L ) | 
| 13 | 2 12 | eqtri | |- ( +g ` K ) = ( +g ` L ) | 
| 14 | 8 13 | grpprop | |- ( K e. Grp <-> L e. Grp ) |